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Subsurface flow and solute transport simulations are performed using different scenarios of permeability
fields generated from the sequential Gaussian simulation method (SGS), the multiple-point FILTERSIM
algorithm and a new multiple-point wavelet-based simulation method (SWS). The SWS method is a
multiple-point pattern-based simulation method which uses discrete wavelet transformation for the rep-
resentation of geologic heterogeneity. For pattern-based simulation, patterns are generated by scanning a
training image with a spatial template. The pattern classifications were performed after reducing the
dimension of patterns by wavelet decomposition at the suitable scale and by taking only scaling compo-
nents of wavelet decomposed patterns. The simulation is performed in a sequential manner by finding
the best-matched class corresponding to the conditioning data and by randomly sampling a pattern from
the best-matched class. The developed method is compared with two other multi-point simulation
algorithms, FLTERSIM and SIMPAT. The comparative results revealed that the proposed method is com-
putationally faster than the other two methods while the simulation maps are comparable. Numerical
simulations of two flow problems are performed using SGS, SWS and FILTERSIM realizations. The numer-
ical results show a superiority of the SWS method over SGS and FILTERSIM in terms of reproduction of the
reference images main features, and agreement with flow and transport results obtained on reference
images.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The development and application of geostatistical methods for
modeling geologic heterogeneity exist in a variety of engineering
and geoscience fields [5,9,11,13,15,16,18–20,22,23,32,35,39,40,
42,44,46,48,51,53,54,61,68,72,76], and the use of these applica-
tions have become common practice. Second-order spatial
statistics and the geological information they contain remains
the mainstream modeling paradigm from the past four decades.
Several investigations have assumed a multivariate log-normal
distribution for the hydraulic conductivity (K), and have used a
Gaussian model [1,6,25,63–65,75]. Although second-order statis-
tics are adequate for the complete statistical description of Gauss-
ian processes, they are inadequate for modeling geological
phenomena which typically deviate from Gaussianity and exhibit
complex spatial patterns. These concerns have been articulated
since the 1990s [36,42,73]. If the effectiveness of geostatistical
modeling, particularly in the presence of non-Gaussianity and
non-linearity, is to be enhanced, more spatial information needs
to be extracted from measurements and made available. This vital
information enhances modeling applications such as the prediction
and quantification of spatial uncertainty. Enhancing modeling and
predictive capabilities have major applied implications, as demon-
strated in reservoirs/aquifers; complex spatial arrangements of
permeable and impermeable units drive the production character-
istics of the reservoir/aquifers, and predictions from drilling and
seismic data have major economic implications. One can certainly
expand this list with examples from underground storage of haz-
ardous waste, environmental modeling, ground water resources,
CO2 sequestration in geological formations [43,47], and so on.

Several previous studies explored the effect of simulation
algorithms or heterogeneity conceptual models on the spatial
distribution of hydrogeologic parameters and consequent flow
responses. A thorough discussion and details are provided in
[2,3,30,33,41,42,46,62,66,70,74,76–78,81], which are briefly
reiterated herein. In the previous works, comparisons between
spatial patterns generated by the various methods including
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multi-Gaussian model, indicator simulation, simulated annealing
technique, and a Markov chain model show significant differences
in spatial distributions. Gaussian, Truncated Gaussian, and
Sequential Indicator simulation methods are also used to generate
a deep-sea fan system in the pore volume geometry connection
and up-scaled permeability, and comparisons have been drawn. It
is also shown that, after up-scaling, large scale permeability distri-
bution was sensitive to the geostatistical model used. The previous
studies, extensively discussed in [46,78], show that flow and trans-
port response functions are strongly affected by the choice of the
model. For example, Gomez-Hernandez and Wen [30] have com-
pared a Gaussian model and three alternatives that have the same
Gaussian histogram and covariance function but with different spa-
tial continuity for extreme values. The results showed that different
connected patterns in K values are produced by each alternative. Lee
et al. [46] showed significantly different flow simulation results
generated with two sets of statistically equivalent geostatistical
conditional simulations in 3D: one being an indicator method that
emphasizes fairly strong organization of hydrofacies [25,26], the
other being a standard Gaussian random field method [21,31]. In
Ref. [46], it is shown that important geologic characteristics may
not be captured by a spatial covariance model, even if that model
is exhaustively determined and closely fits the exponential function.

Today’s trends, developments and applications focus on the so-
called multiple point simulation algorithms, such as the SNESIM
[67], FILTERSIM [79,81], and SIMPAT [4] algorithms and related
extensions [8,12,52]. Additionally related new developments in-
clude Markov random field based multipoint type approaches
[14,73], and kernel approaches [63], as well as multi-scale simula-
tions based on discrete wavelet decomposition [10,29]. Recently,
HOSIM [56–57] introduced a new point-based multiple-point
(mp) simulation algorithm based on high order spatial cumulants.
The algorithm has successfully been applied to underground flow
and solute transport simulations, and has been found superior to
other multiple-point algorithms [59]. HOSIM algorithm employs
a high-dimensional Legendre series to approximate the conditional
probability densities. The number of coefficients in the series var-
ies with respect to the number of samples used to calculate a value
at a given point, and to the order of the series. In 1D, for a series of
order n, the number of coefficients to be calculated is of order O(n);
in 2D, it is of order O(n2). Using m samples and a series of order n,
the conditional probability density calculation involves a number
of coefficients of order O(nm). The calculation of these coefficients
at every point is time consuming, and storing them also requires
significant memory. In addition, the number m of samples, found
in a neighborhood of a point, increases gradually through the con-
ditional simulation process. Thus, the algorithm may significantly
slowdown the CPU time for large-scale problems. In the best cases,
HOSIM has been found much slower than FILTERSIM method.
Finally, the algorithm works only for continuous images, and
calculating cross-cumulants will lead to slower algorithm.

As an alternative, the present paper proposes an efficient
pattern-based simulation algorithm of continuous and categorical
images using discrete wavelet transformation. Some comparisons
with FILTERSIM showed that the proposed method is more accu-
rate and faster.

The pattern database is generated in a manner similar to other
mp simulation techniques and is classified by using the scaling
coefficients of the wavelet decomposition of each pattern. The
main difference of a wavelet-based approach from other multi-
point algorithms is how the pattern database is classified. The
scaling coefficients of a wavelet decomposed pattern can capture
most of the pattern variability, and at the same time reduce the
dimensionality of the pattern database. Pattern database classifica-
tion is performed using scaling coefficients of patterns and by
applying the k-means clustering technique. The class is
represented by class prototype. For simulation, the similarity of
the class prototype with the conditioning data event is calculated.
A random pattern is generated from the ‘best match’ class.

In this paper, a novel method based on discrete wavelet trans-
formation is presented. The developed method is an alternative
to the multiple-point methods discussed above. The performance
of the proposed wavelet-based method was compared with two
other multi-point algorithms, FILTERSIM and SIMPAT. Effects of
spatial geologic heterogeneity - generated by the SWS, SGS and
FILTERSIM methods - on flow and transport simulation results
are also studied.
2. Simulation of geologic heterogeneity using discrete wavelet
transformation

The proposed method consists of five steps (described below in
detail): (1) generation of a pattern database, (2) dimensional
reduction of the pattern database using discrete wavelet transfor-
mation, (3) classification of the pattern database, (4) similarity
measures between conditional data and class prototypes during
simulation, and (5) sequential pattern-based simulation. The same
terminologies as other multi-point simulation algorithms
[4,67,79,80] are used in this paper.

2.1. Generation of a pattern database

Pattern-based simulation is an image reconstruction problem
[5,79,80], which reproduces the multiple-point characteristics of
a training image as captured by the template used. A training im-
age (TI) is an analog of the geological architecture deemed present
in the field/reservoir. In pattern-based simulation, the training
image patterns are reproduced in a stochastic manner, which ulti-
mately respects the multi-point relations of the training image as
captured by the template(s) used [4]. Pattern-based simulation
algorithms imply two steps: (1) the generation of a pattern data-
base; and (2) searching for the best match pattern from the pattern
database to the conditioning data. Define tiðuÞ as a value of the
training image ti where u 2 Gti and Gti is the regular Cartesian grid
discretizing the training image, tiTðuÞ indicates a specific multiple-
point vector of tiðuÞ values within a template T centered at node u,
that is

tiTðuÞ ¼ ftiðuþ h1Þ; tiðuþ h2Þ; . . . ; tiðuþ haÞ; . . . ; tiðuþ hnTÞg: ð1Þ

Where, the ha vectors are the vectors defining the geometry of
the nT nodes of template T and a ¼ f1;2; . . . ;nTg. The vector h1 ¼ 0
represents the central location u of template T.

Same as for other multi-point algorithms [4,67,79,80], the
pattern database, patdbT, is then obtained by scanning ti using
template T and stored using the multi-point tiTðuÞ vectors in the
database.

Patterns, in the pattern database patdbT, are location-indepen-
dent, and kth pattern is presented as

patk
T ¼ fpatkðh1Þ; patkðh2Þ; . . . ; patkðhaÞ; . . . ;patkðhnTÞg: ð2Þ

Where, k ¼ 1;2; . . . ;nPatT , nPatT is number of patterns in the pat-
tern database, and patkðh1Þ; patkðh2Þ; . . . ; patkðhaÞ; . . . ; patkðhnTÞ are
values obtained from tiTðuÞ.

During the simulation, the best matched pattern corresponding
to conditional multi-point data will be searched from the pattern
database. Since, the number of patterns (nPatT ) in the pattern data-
base is very large, to search the best matched pattern from the pat-
tern database is computationally demanding. To reduce the
computational time of simulation, FILTERSIM and other pattern
base multipoint simulation algorithms, classify the entire pattern
database into a number of classes. For simulation, the distance



20 40 60 80 100

20

40

60

80

100
5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

………………
………………

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

Pattern 1 Pattern 2

Pattern
TPatn

5 10 15

5

10

15

5 10 15

5

10

15

Class 1

………………

Class 2

………………
5 10 15

5

10

15

5 10 15

5

10

15

Class m

………………
5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

Class 1

5 10 15

5

10

15

Class 2

5 10 15

5

10

15

Class m

Training image ti

Template T

Pattern database patdbT
Classified patterns in
m classes

Representative or
Prototype of m classes

Fig. 1. Basic steps involved from pattern generation to class representation.

Fig. 2. (a) Original image considered as a large pattern; and (b) its reconstructed
image after reducing 75% of the data of the original image.
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from the conditioning data to the class is calculated. Therefore,
representatives (prototypes) of each class are calculated from each
class. Fig. 1 represents the basic steps involved from pattern gener-
ation to class representation in pattern-based multi-point simula-
tion algorithm.

To generate the pattern database patdbT, a template size T must
be selected. An automatic template-selection algorithm as pre-
sented by Honarkhah and Caers [37] is applied in this paper for
selecting the template size.

2.2. Dimensional reduction of a pattern database

After generating the patdbT, the classification of the pattern
database will be performed so that during simulation, instead of
searching the entire pattern database (patdbT), only some repre-
sentative members, i.e. prototypes of the classes, are compared
with the conditioning data event as shown in Fig. 1. However,
when the template dimension is large, the dimension of patdbT will
also be large. Therefore, classification of this large dimensional pat-
tern database patdbT is a computationally demanding task. In pre-
vious research, the patdbT classification was performed by reducing
the dimensions of the pattern by using filters [75,76]. In Refs.
[75,76], 6 and 9 filters are used for two- and three-dimensional
training images, respectively. The main limitations of the filter-
based dimensional reduction technique are (a) it is always difficult
to represent a complex patter only using a few filter values, and
there is no guarantee that those filter values will successfully rep-
resent a pattern; and (b) the filter based method does not show any
theoretical or numerical proof of the amount of data variability of
patterns represented by filter values. A wavelet-based representa-
tion of patterns is introduced where the dimension of the pattern-
for-pattern classification can be reduced by selecting the scale of
wavelet decomposition. The term scale is referred to here as the
resolution or support size on which a given wavelength of a TI or
analog is defined. In the context of spatial simulation, a solution
for developing methods that facilitates the explicit reproduction
of consistent complex scale relationships between patterns has
been proposed for two-dimensional cases based on the use of the
discrete wavelet transformation (DWT), as detailed in [29]. It is
noted that the main difference between the proposed method
and FILTERSIM method is how the patterns of the pattern database
are classified.

Wavelet analysis can decompose any pattern into a series of
orthogonal basis functions [49]. Multi-resolution wavelet analysis
is performed according to scale – thus decomposing data into dif-
ferent datasets according to scale – and provides both frequency
and spatial information. A two-dimensional dataset can be consid-
ered as a square integrable function in Hilbert space. Due to its
multi-resolution property, the wavelet function provides a series
of orthonormal bases functions by scaling and shifting the original
basis function, known as the mother wavelet function. The two-
dimensional DWT is a decomposition of a dataset in terms of a
set of scaled and shifted wavelet functions fwLH;wHL;wHHg and scal-
ing functions /LL that form an orthonormal basis for square inte-
grable Hilbert space L2ðR2Þ [17]. The DWT of a two-dimensional
pattern tiT of N � N can be decomposed as

tik
T ¼

XNJ�1

i;l¼0

ak
J;i;l /LL

J;i;l þ
X
B2D

XJ

j¼1

XNj�1

i;l¼0

wk;B
j;i;lw

B
j;i;l; ð3Þ

where D ¼ fLH;HL;HHg, Nj ¼ N=2j, J is number of scale, and
k ¼ 1;2; . . . ; nPatT . The functions included in set D are known as
wavelet sub-bands. The two-dimensional DWT is an extension of
the one-dimensional DWT in two different directions, due to the
separable properties of the wavelet basis function [17]. Two-dimen-
sional wavelets can be constructed by taking the product of a



Fig. 3. All 36 patterns in a class after pattern classification of the pattern database in (a); and (b) a prototype of the class in (a).
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one-dimensional scaling or wavelet in the x direction and a one-
dimensional scaling or wavelet in the y direction. The two-dimen-
sional scaling and wavelet function can then be written as follows

/LLðx; yÞ ¼ /LðxÞ/LðyÞ;
wLHðx; yÞ ¼ wLðxÞ/HðyÞ;
wHLðx; yÞ ¼ wHðxÞ/LðyÞ;
wHHðx; yÞ ¼ wHðxÞwHðyÞ;

ð4Þ

where, /L and wH are one-dimensional scaling and wavelet func-
tions, respectively.

The scaling and wavelet coefficients aj�1 and wj�1 at scale j � 1
can be experimentally calculated by taking inner products [17]

aj�1 ¼ htiT ;/ji;
wB

j�1 ¼ htiT ;w
B
j i:

ð5Þ

In this paper, the Haar wavelet basis functions are used [49]. For
Haar wavelet, /ðxÞ and wðxÞ are presented as [47]

wHðxÞ ¼
1 0 6 x < 1

2

�1 1
2 6 x < 1

0 otherwise

8><
>: ; /LðxÞ ¼

1 0 6 x < 1
0 otherwise

�
: ð6Þ

The scaling image of the pattern aJ;i;l provides average type informa-
tion about the pattern and preserves most of the data variability;
thus one can easily calculate the amount of data variability
captured by a scaling image of a certain scale decomposition of a
pattern [49]. It is noted that the size of the scaling image aJ;i;l is
Nj � Nj, where Nj ¼ N=2j, j ¼ 1;2; . . . ; J, and J is number of scale.
Therefore, the amount of data in a scaling image is 2j�d times less
than the amount of data in a pattern tiT, where d is the dimension
of patterns. Hence, if only the scaling image of the patterns in the
pattern databases are used for classification, the computational
time can substantially be reduced depending upon the scale of
decomposition.

For an example, Fig. 2(a) is considered as a large pattern. The
reconstructed pattern is presented in Fig. 1(b) by keeping only
the scaling image aJ;i;l after one scale decomposition. It is observed
that the pattern reproduces the original pattern well, at the same
time reducing 75% of the data of the original pattern.

The main concern of the wavelet-based simulation is the selec-
tion of the appropriate scale of decomposition. In this paper, we
have applied the singular value decomposition (SVD) method.
The SVD facilitates the selection of a global natural scale in DWT.
The natural scale is the level associated with the most dominant
eigenvalue. The eigenvector corresponding to the dominant eigen-
value is considered the optimal scale [60]. To know more about the
optimum scale selection by eigenvector decomposition, readers are
requested to follow [60].
2.3. Pattern database classification

For classification of pattern database patdbT, the scaling image
of the patterns aJ;i;l, (which is reduced in dimension depending
on the value of J) is used. The k-means clustering technique
[24,36,38] is applied to classify the pattern database patdbT. The
k-means clustering technique divides the patdbT into a predefined
number of classes such that the sum of the inter-class distance is
maximized. In k-means clustering algorithm, the patdbT is
classified based on the selected priory cluster number (m). The
algorithm is initialized by selecting m random patterns from the
patdbT. These selected m patterns represent the initial class
centroids. Since the patdbT classification is performed using only
the scaling image of patterns aJ;i;l, randomly selected scaling images
of m patterns from patdbT act as initial centroids. The aim of the k-
means clustering algorithm is to minimize the following objective
function iteratively
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P ¼
Xm

s¼1

XnPatT

k¼1

ak
J;i;l � cs

��� ���2
; ð7Þ

where, kak
J;i;l � csk2 is the squared Euclidian distance between a

scaling image of a pattern ak
J;i;l and the centroids of class cs, is a

measure of the distance of the nPatT patterns from their respective
cluster centers.

After classifying the patdbT by minimizing the objective func-
tion at Eq. (7), prototypes of classes are calculated. The prototype
is the representative member of each class. These prototypes are
used during the simulation process, when the similarity between
the conditional data event and prototype class is calculated. The
prototype value is obtained by averaging all patterns falling into
a particular class after classification. Fig. 1 shows the patterns, pat-
tern classification and their prototypes.

To select the optimal cluster number, we have used gap statis-
tics as presented by Tibshirani et al. [71]. Suppose that we have
clustered the data into k clusters c1; c2; . . . ; ck, with Cr denoting
the indices of observation in cluster r, and nr ¼ jCr j. If Dr is the
sum of the pairwise Euclidian distances for all points in cluster r,
then

Wk ¼
Xk

r¼1

1
2nr

Dr: ð8Þ

The optimal number of clusters is then the value of k for which the
gap value is maximum. The gap value for k can be defined as

gapnðkÞ ¼ EnflogðWkÞg � logðWkÞ; ð9Þ

where En denotes the expected value of sample size n from the ref-
erence distribution. The reference vectors are obtained by generat-
ing uniform sampling over the range of the values for that feature.
For more details about the reference vector generation, interested
readers can consult [71].

To show the efficacy of the proposed classification algorithm
using only the wavelet decomposed scaling image aJ;i;l of patterns
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and k-means clustering algorithm, Fig. 2(a) is considered as a
two-category training image. A template size, which is optimally
selected, of 15� 15 is used to extract patterns from the training
image. The scale of decomposition is selected by SVD method
and the optimum scale is 2 in this case. The scaling image after
two-scale wavelet decomposition is used for patdbT classification.

The optimum cluster number is selected by observing the gap
statistics and it was observed that 71 is the optimum cluster in this
problem. Fig. 3 represents all patterns (36) in a particular class
after classification of patdbT using the proposed approach. It is ob-
served from the figure that the patterns look very similar, and the
algorithm can easily classify the patterns. Since the pattern classi-
fication was performed using the scaling image aJ;i;l after two scale
decomposition, the dimensionality of the patterns are reduced
from 225 (15� 15) to 16 (4� 4, size of scaling image after two
scale decomposition). Since the dimensions are reduced from 225
to 16, it can easily be concluded that the proposed algorithm will
be computationally faster than classifying patterns based on their
original dimensions.
2.4. Similarity measures between conditional data and class
prototypes

After classifying the patdbT and prototype calculation, simula-
tion of spatial patterns was initiated. During simulation, the simi-
larity between the conditioning data event and the prototypes of
the classes were carried out. A sequential simulation algorithm
[30] is used for pattern-based simulation in this paper. At each
visited node, a conditioning data event is obtained by placing the
same template used in the training image, centering at the node
to be simulated. The similarity between the conditioning data
and prototypes of classes are calculated by a distance function.
A distance function is used to calculate the distance from the
prototypes of classes to the conditioning data event. The distance
function used in this paper is L2-norm [10,32,45]. The distance
function used is
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Fig. 5. Reference image obtained from a 3D fluvial reservoir (a); (b) a training; and (c) 208 hard data set generated randomly from the reference image to be simulated.

Fig. 6. Two simulated realizations generated using both the SGS method and the
proposed method (SWS). (# 1) and (# 2) refer to realization number.
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d ¼
XnT

i¼1

ðpatsðhiÞ � yðhiÞÞ2; ð10Þ

where, yðhiÞ is the conditioning data event and patsðhiÞ is the proto-
type of class s, If some of yðhiÞ values are missing in the conditioning
data, those hi will not be considered for distance calculation.

When simulating a node, if all the nodes within a template are
known, i.e. yðhiÞ values are available for all hi, the distance calcula-
tion with a large template will be computationally demanding. To
reduce the computational time of a distance calculation, a scaling
image of the wavelet decomposed conditioning data can be used.
The modified distance function can be presented as

d ¼
XNj�Nj

i¼1

ðaJ;i;lðhiÞ � ay
J;i;lðhiÞÞ2; ð11Þ

where, Nj � Nj is the number of data in the scaling image after
wavelet decomposition, aJ;i;lðhiÞ is the scaling image of patsðhiÞ,
and ay

J;i;l is the scaling image of yðhiÞ.
If within the conditioning data event any hard data are present,

Eq. (10) will be used for distance calculation even if all the nodes
within a template are fully known.

2.5. A general algorithm

Fig. 4 presents the schematic diagram of the simulation method
proposed in this paper. The main steps of the proposed method are
as follows:

1. Scan the training image using the selected template T. Perform
wavelet decomposition of the generated patterns using the
selected scale.

2. Classify the pattern database patdbT, based on only the scaling
image by an optimally selected cluster number and calculate
the classes prototypes.

3. Define a random path visiting once and only once all unsampled
nodes.

4. Places the template T at each unsampled location u to get con-
ditioning data. The distances from the class prototypes are cal-
culated from the conditioning data available within the
template using Eq. (10), (11). Select the class which has mini-
mum distance from the conditioning data. If no conditioning
data are available within T, a random class is selected.

5. Draw a random pattern from the selected class and paste the
pattern by centering the simulated point u. If any hard condi-
tioning data are present in any node within the template of u,
they are frozen before pasting the selected pattern.

6. Repeat Steps 4 and 5 for the next points in the random path
defined in Step 3.
7. Repeat Steps 3–6 to generate different realizations using differ-
ent random paths.

3. Numerical models

Two-dimensional continuous horizontal slices of a 3D fluvial
reservoir are used as reference images to perform numerical
simulations using realizations generated by the SGS, SWS and
FILTERSIM methods. The SWS method is compared, in particular,
to the SGS and FILTERSIM methods for the following reasons: (1)
all three methods can perform simulations on continuous and cat-
egorical images, (2) the FILTERSIM method is an mp pattern-based



Fig. 7. North–South (a) and East–West (b) variograms of SWS realizations. The circles refer to the data set and the solid lines refer to the realizations.

Fig. 8. Binary maps, with value 1 if K > 85% and 0 otherwise, for the reference image (a), two realizations of SWS method (b,d) and SGS method (c,e), respectively.

Table 1
Computing times for SIMPAT, FILTERSIM and our pro-
posed method (SWS).

Computing time (s)

SIMPAT 6373
FILTERSIM 2135
SWS 1232
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simulation algorithm, which uses a classification method of spatial
patterns, and (3) the SGS is a well-known two-point statistical
method.

The data sets used here (Fig. 5) are obtained from the Stanford V
Reservoir Data Set [50]. Stanford V is a synthetic fluvial reservoir
data set containing different channel thicknesses and orientations.
A conductivity (K) field lumps the conductivity distribution at
different thicknesses, and is shown in Fig. 5(a). Fig. 5(a) is the first
reference image used in the following numerical analysis, and a
second reference image is used later for a detailed comparison be-
tween SWS and FILTERSIM.

K-field represents the reference image to be simulated using
sample data sets. The data set is randomly generated with 208
samples (Fig. 5(c)) and is combined with a training image to gener-
ate the pattern database. The training image, shown in Fig. 5(b), is
another horizontal section of the 3D reservoir. All the images used
have the dimensions of 100� 128 cells in x- and y-direction,
respectively, with uniform node spacing of 1 m in each direction.
We generated 10 realizations of the conductivity field for each
stochastic simulation. Realizations of SWS, SGS and FILTERSIM
are compared by studying their impacts on underground flow
and solute transport. Several flow simulation problems are used
including an incompressible two-phase problem, and a single-
phase problem of advective–dispersive–diffusive solute transport.
The governing equations of the flow and solute transport problems
are not repeated here however for more detail we refer to [7].



Fig. 9. Conditionally simulated realizations using the FILTERSIM (a,b) and SIMPAT (c,d) methods.

Fig. 10. Binary maps, with value 1 if K > 85% and 0 otherwise, for two realizations of
the FILTERSIM method.

Fig. 11. Histograms of the SWS and FILTERSIM realizations. The circles refer to the
data set and the solid and dashed lines refer to the SWS and FILTERSIM realizations,
respectively.
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4. Results and discussion

4.1. Geostatistical simulations

In this section, we compare the SWS proposed method to both
the two-point SGS method and to the multiple-point FILTERSIM
and SIMPAT methods.
4.1.1. Comparative study with two-point SGS method
Different realizations are generated by the proposed SWS and

SGS methods. Two different realizations of each method are shown
in Fig. 6. This figure shows a much better reproduction of the



Fig. 12. A conceptual model for incompressible two-phase flow simulation
problem. The domain is initially saturated by a non-wetting phase, i.e. oil. Wetting
phase, i.e. water, is injected from the top to produce non-wetting phase from the
bottom.

Table 2
Model parameters used for the analysis of two-phase problem; /, k denotes,
respectively, the matrix porosity and permeability. Sa , qa , kra and la are the
saturation, density, relative permeability, and viscosity of phase a (a = wetting phase
and non-wetting phase), respectively.

Domain
dimensions:

100 m� 128 m

Rock properties: / ¼ 0:2; k = [9.86E�13 m2; 9.86E�11 m2]
Fluid properties: lw ¼ 1 cP; ln ¼ 0:45 cP; 1 cP ¼ 10�3 kg=ms;

qw ¼ 1000 kg=m3; qn ¼ 660 kg=m3

Relative perm
abilities:

Quadratic: krw ¼ S2
e ; krn ¼ ð1� SeÞ2;

Se ¼ ðSw � SrwÞ=ð1� Srw � SrnÞ the normalized saturation
Residual

saturations:
Srw ¼ 0; Srn ¼ 0

Mesh size: 12573 rectangles
PVI: Pore volume injection

Fig. 14. Recovery of the non-wetting phase vs. Pore volume injection (PVI) for both
the proposed method SWS and SGS method realizations. The continuous line with
circles refers to the recovery in the reference domain.

30 H. Mustapha et al. / Advances in Water Resources 54 (2013) 22–37
complex spatial patterns and large-scale spatial features using the
proposed method rather than SGS.

The proposed method’s realizations better preserve the spatial
structure of channels, and they are in good agreement with the
data as well as reference image. The SGS realizations lack much
of the high-K channeling. In addition, SWS realizations preserve
the statistics of the data as shown first by Fig. 7. This figure shows
the comparison between SWS realization variograms along East–
West and North–South directions of the data set. Connectivity of
Fig. 13. Wetting-phase saturation profiles at 0.5 pore volume injection (PVI) in the reference image (a), two realizations of SWS method (b,d) and SGS method (c,e). Color
scale represents water saturation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)



Table 3
Model parameters used for the analysis of solute transport problem.

Parameter Value

Free-solution diffusion coefficient 1 � 10�9 m2 s�1

Water density 1000 kg m�3

Water viscosity 1.1 � 10�3 kg m�1 s�1

Specific storage of matrix 9.96 � 10�5 m�1

Matrix permeability [9.86E�13 m2; 9.86E�11 m2]
Matrix longitudinal dispersivity 1.0 m
Matrix transverse dispersivity 0.1 m
Matrix porosity 0.2
Tortuosity 0.1

Fig. 15. Solute transport simulation in reference image (a), proposed method SWS (b,d) a
solute concentration C/C0. (For interpretation of the references to color in this figure leg

Fig. 16. Average concentration along the bottom boundary vs. time for both the proposed
the concentration in the reference domain (left). A close-up is shown in on the right.
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both the SWS and SGS methods is checked through the spatial con-
nection of the upper 15% high-permeability values. Fig. 8 shows
the binary map obtained (1 if K > (0.85 ⁄ (maxK �minK) + minK)
and 0 otherwise) for the reference image, SWS and SGS methods.
As a result, SWS produces much better connected channels than
SGS and the connectivity is consistent with the result obtained in
the reference image.

4.1.2. Comparative study with other multiple-point methods
In this section, the wavelet based method (SWS) is compared to

the multiple-point FILTERSIM and SIMPAT methods. A template
nd SGS (c,e) method realizations. Time = 50000 days. Color scale represents relative
end, the reader is referred to the web version of this article.)

method SWS and SGS method realizations; the continuous line with circles refers to
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size is selected using an automatic template-selection algorithm
[37]. The optimum scale is 13� 13 in this case. The template coef-
ficients are extracted by moving the template over the training im-
age and storing the extracted patterns in the training database. For
conditional simulation, the wavelet decomposition is performed
after generating the pattern database to reduce the dimensionality.
Fig. 17. A second reference image (a) close to the training image in Fig. 5(b); (b), and (c
solute transport simulation in reference image (a).

Fig. 18. Binary maps, with value 1 if K > 85% and 0 otherwise, for 9 new realizations of th
in Fig. 5(b).
The critical step of wavelet decomposition for dimensionality
reduction is the selection of the optimal scale. The optimum scale
selected by SVD method [60] is 3. The k-means clustering tech-
nique is utilized to classify the database and therefore reduce the
computation time required for searching the patterns within. The
number of clusters is selected by calculating the gap statistics
) are, respectively, the binary map, with value 1 if K > 85% and 0 otherwise, and the

e SWS method simulating the spatial patterns in Fig. 18(a) using the training image



H. Mustapha et al. / Advances in Water Resources 54 (2013) 22–37 33
[71]. The gap statistic value is maximum when the cluster number
is 84; therefore, the cluster number of 84 is the optimal cluster
number for this example. To assess the performance of the pro-
posed wavelet-based simulation method, a comparative study is
performed in terms of computing time as well as simulated realiza-
tions with both the SIMPAT [4] and FILTERSIM [75,76] algorithms.
All three algorithms were tested under the MATLAB environment.
The same random path, training image, and conditioning data were
used in all three algorithms. For both SIMPAT and FILTERSIM algo-
rithms the template size is optimally selected and the optimum
template is 13� 13. The cluster number in our approach is opti-
mally selected as discussed previously and optimum cluster num-
ber is 84. The cluster number for the FILTERSIM algorithm is 200,
however no cluster number selection is required for the SIMPAT
algorithm. The computational time of conditional simulation for
SIMPAT, FILTERSIM and our proposed method is presented in Ta-
ble 1. The computing time results show that our proposed algo-
rithm is 5 times faster than the SIMPAT algorithm and almost 2
times faster than the FILTERSIM algorithm.

The conditionally simulated realizations generated with SIM-
PAT, and FILTERSIM are presented in Fig. 9. Visual inspection sug-
gests that the SWS algorithm (Fig. 6) has performed better than
FILTERSIM, however has no significant difference from SIMPAT.
However, the computing time of SWS is 5 times less than SIMPAT
and 2 times less than the FILTERSIM algorithm. Moreover, the
Fig. 19. Binary maps, with value 1 if K > 85% and 0 otherwise, for 9 new realizations of th
image in Fig. 5(b).
channel reproduction at the top-left corner of the image is compar-
atively better in the proposed algorithm than in SIMPAT and FIL-
TERSIM. In conclusion, SWS is computationally faster and
provides very satisfactory results. It is important to note that FIL-
TERSIM is producing more channels than the other methods as
shown in Fig. 9(a) and (b), and Fig. 10. As a result, the data histo-
gram is not reproduced by FILTERSIM realizations in contrast to
SWS realizations as shown in Fig. 11. Having reproduced signifi-
cantly more channels in the FILTERSIM realizations than the refer-
ence image also has a significant impact on the flow responses as
discussed later.

4.2. Single and transport simulations

4.2.1. Incompressible two-phase flow problem
In this section, we solve an incompressible two-phase fluid flow

problem. The flow of a wetting phase (i.e. water) and a non-wet-
ting phase (i.e. oil) in a n-D (n = 1, 2 or 3) polygonal porous medium
and over a time interval [0,T] is described by Darcy’s law and the
saturation equation for each phase [55,56]. A Galerkin finite ele-
ment approach is employed to resolve the flow problem [55,58].
We consider a 2D horizontal domain (100 m� 128 m) initially sat-
urated with oil, and we used the same level of discretization for the
model discretization and the geostatistical models. We injected
water from the upper right corner and produced oil at the opposite
e FILTERSIM method simulating the spatial patterns in Fig. 18(a) using the training



Fig. 20. Solute transport simulation using the 9 new SWS realizations. Color scale represents relative solute concentration C/C0. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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corner as shown in Fig. 12. The injection rate in pore volume (PV) is
0.1 PV/year. For simplicity, capillary pressure is neglected. The
fluid and medium properties are given in Table 2.

The water saturation profiles for the reference image and for
SWS and SGS realizations are all displayed in Fig. 13. In contrast
to SGS, the SWS realizations and the reference image have been
found to be in good agreement where very similar water saturation
profiles are produced. The connected channels in the SWS realiza-
tions are very close to the connected channels in the reference im-
age, which has the effect of conducting the injected water through
the high-permeability values in a similar way. Failing to reproduce
similar connected channels in the SGS realizations has the effect of
obtaining different water saturation profiles, and, consequently, a
different oil recovery. The oil recovery vs. PVI for both SWS and
SGS realizations are plotted in Fig. 14. This figure shows a good
agreement between SWS realizations and the reference image.
The difference is less than 3%. However, in some SGS realizations,
the oil recovery deviates 20% from the oil recovery in the reference
image, clearly showing that the new SWS method presented here is
superior relative to the standard SGS method.

4.2.2. Single-phase flow and solute transport problem
In this section, we solve an advective–dispersive–diffusive sol-

ute transport in a n-D (n = 1, 2 or 3) polygonal porous medium
and over a time interval [0, T]. The governing equations are the
Darcy’s law and the solute concentration equation [34]. The
numerical simulations in this section are completed using a control
volume finite element approach implemented in the HydroGeo-
Sphere software [27,28,69]. We used the same model domain
and gridding that is employed in the previous section. Dirichlet
and Neumann boundary conditions are applied such that a solute
is injected from the top where the Dirichlet boundary condition
c = 1 is imposed, and lateral and bottom boundaries are Neumann
conditions where dc/dn = 0. We assumed a constant head along the
top and bottom Dirichlet boundaries, and lateral boundaries are
no-flow Neumann boundaries. The relevant parameters used in
this example are shown in Table 3.

The solute concentration profiles for the SWS and SWG realiza-
tions are shown in Fig. 15. As for the flow problem, SWS realiza-
tions are much better than SGS realizations in reproducing
concentration profiles similar to the reference image concentration
profile. Multiple-point connectivity of high-permeability values is
relatively higher in the SWS realizations, and this may affect the
solute transport behavior and the propagation of the transported
plume. The average concentrations at the bottom boundary is cal-
culated for the reference image. The SWS and SGS realizations are
all displayed in Fig. 16; this figure shows that the reference solu-
tion is close to the SWS realizations average solution.

Numerical simulations are also performed using FILTERSIM
realizations. However, it has been noticed that the FILTERSIM
method produces significantly more channels than the other meth-
ods as discussed above. The number of channels has a big effect on
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the solute propagation as shown in Fig. 17. It is important to re-
mind readers that the objective of using a multiple-point method
is not to reproduce channels but to reproduce the same number
of channels as believed to be in the real images (i.e. reference
images). Given that FILTERSIM is strongly reflecting the training
Fig. 21. Solute transport simulation using the 9 new FILTERSIM realizations. Color scale r
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 22. Average concentration along the bottom boundary vs. time for both the propose
refers to the concentration in the reference domain (left). A close-up is shown on the ri
image features, we have used a second reference image
(Fig. 17(a)) that is closer to the training image shown in Fig 5(b)
than the first reference image in Fig. 5(a). The same data locations
are selected from the new reference image. The same solute trans-
port problem using the same boundary conditions and input data
epresents relative solute concentration C/C0. (For interpretation of the references to

d method SWS and FILTERSIM method realizations; the continuous line with circles
ght.
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is resolved using the new realizations of the SWS and FILTERSIM
methods.

First, Fig. 17(b) shows the main channel configurations using a
cutoff above 85%, and the corresponding reference solute concen-
tration profiles are shown in Fig. 17(c). The main features of the
SWS and FILTERSIM realizations are shown in Figs. 18 and 19,
respectively.

Fig. 19 shows clearly that FILTERSIM is also producing signifi-
cantly more channels in the example, confirming that FILTERSIM
is a strongly training image driven algorithm. The solute transport
simulation results are shown in Figs. 20 and 21. Fig. 20 shows that
the results of SWS method are in good agreement with the results
obtained from solving the numerical problems using the reference
image as input. The FILTERSIM results are not in good agreement
with the reference results. The propagation of the solute is much
faster due to the number of connected channels. The average con-
centration at the bottom is also calculated for the SWS and FILTSE-
RIM results and is shown in Fig. 22. This figure shows again the
effects of over connected channels produced by the FILTERSIM
method on the simulations.

All the results presented above demonstrate that flow and
transport simulations based on SWS simulations are dominated
by appropriate and accurate results reproduced by the level of con-
nectivity of the channels. The SGS and FILTERSIM realizations have
the same effect on the simulations; that is to reproduce very differ-
ent results as they should be.
5. Conclusions

In this paper, a Sequential Wavelet-based Simulation (SWS)
method is employed to represent geological heterogeneity. The
generated pattern database from the training image is classified
using the scaling image of the wavelet decomposed patterns. The
scaling image of the optimally selected scale helps to reduce the
computational time of the pattern database classification. The per-
formance of the proposed SWS method was compared with two
other multi-point simulation algorithms, FILTERSIM and SIMPAT.
The results show that the SWS method is computationally faster
than FILTERSIM and SIMPAT and that the simulated realizations
are satisfactory. SWS, the sequential Gaussian simulation (SGS),
and FILTERSIM methods are compared by illustrating their effects
on underground flow and transport. The results presented showed
(a) a good reproduction of data characteristics, i.e. low- and high-
order statistics, obtained by SWS realizations; (b) a more appropri-
ate connectivity, in the high-K values, obtained in SWS realizations,
and a better agreement with the reference image than with SGS
and FILTERSIM; (c) a more consistent and stable behavior of the
water flow using SWS realizations; (d) a more accurate reproduc-
tion of oil recoveries by SWS realizations compared to the recover-
ies in the reference image, as opposed to the approximate 20%
error that characterizes the SGS realizations; and (e) an agreement
between reference and SWS solutions for solute concentration
profiles.
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