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[1] When predicting flow in the unsaturated zone, any method for modeling the flow will
have to define how, and to what level, the subsurface structure is resolved. In this paper, we
use the Ensemble Kalman Filter to assimilate local soil water content observations from
both a synthetic layered lysimeter and a real field experiment in layered soil in an
unsaturated water flow model. We investigate the use of colored noise bias corrections to
account for unresolved subsurface layering in a homogeneous model and compare this
approach with a fully resolved model. In both models, we use a simplified model
parameterization in the Ensemble Kalman Filter. The results show that the use of bias
corrections can increase the predictive capability of a simplified homogeneous flow model
if the bias corrections are applied to the model states. If correct knowledge of the layering
structure is available, the fully resolved model performs best. However, if no, or erroneous,
layering is used in the model, the use of a homogeneous model with bias corrections can be
the better choice for modeling the behavior of the system.
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1. Introduction

[2] The unsaturated zone, with its placement between
the land surface and the groundwater table, plays an impor-
tant role in the terrestrial water cycle. It is an important
part of any simulation of surface-land-atmosphere systems.
It is a complex heterogeneous system that is poorly accessi-
ble for observations. A crucial point in modeling processes
in the unsaturated zone is therefore to make use of as many
observations of the system as possible. It has been shown
by many [e.g., Papafotiou et al., 2008; Mertens et al.,
2005; Ines and Mohanty, 2008b; Kumar et al., 2010] that
model parameters for one spatial scale may not represent
the system at another scale. Hence, it is important to obtain
parameters for a model at the scale it is to be used at. How-
ever, the available observations have often observation vol-
umes that do not match the scale of the model. When, for
example, using observations from time domain reflectome-
try (TDR) probes, one might face a situation where parame-
ters for a model with grid cells that exceed the typical
volume of the observations that are used for calibration and
validation have to be found.

[3] The usual approach in subsurface modeling is to cali-
brate a model using observations from one or several mea-

surement campaigns, where information is only available
for a restricted time period (a review of methods is given,
for example, by Vrugt et al. [2008]). If boundary conditions
do not change significantly compared to the calibration
conditions, the calibrated model can be used for predic-
tions, also for time spans that do not immediately follow
the measurement period. When continuous observations
are available and the model is used to make predictions for
limited time periods, the situation is different. Here, an esti-
mation of states as initial condition for a prediction can be
used. Methods for such situations that are gaining increas-
ing attention also in unsaturated zone modeling are the data
assimilation methods [see e.g., Reichle, 2008]. Of these,
the Ensemble Kalman Filter (EnKF) is a commonly used
sequential method. In sequential data assimilation, the
states that control the model at a given moment, and possi-
bly the model parameters, are updated sequentially over
time at time steps where observations are available, instead
of just updating parameters once for all times. These meth-
ods are suited for situations, where continuous observation
series are available and the model is used to make predic-
tions for limited time periods. If parameter updates are car-
ried out, data assimilation can be considered also a
sequential calibration method. Also in data assimilation with
and without parameter updates, the problem of mismatch
between length scales of model and observation might occur.

[4] The Ensemble Kalman Filter (in the following
denoted as EnKF) was presented by Evensen [1994] as an
ensemble estimation of the original Kalman filter and tested
for an ocean model. Since then, the EnKF has been used
for updating states, or states and parameters, in reservoir
modeling [e.g., Oliver et al., 2010; Vogt et al., 2012],
atmospheric modeling [e.g., Houtekamer and Mitchell,
1998], groundwater modeling [e.g., Hendricks Franssen
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and Kinzelbach, 2008; Kollat et al., 2011; Hendricks
Franssen et al., 2011], and in coupled modeling of surface-
subsurface systems [e.g., Kumar et al., 2008; Pasetto et al.,
2012]. The EnKF has also been used to assimilate soil
moisture observations, both from satellite or other near-
surface observations [e.g., Walker et al., 2001; Reichle
et al., 2002; Crow and Van Loon, 2006; Crow and van den
Berg, 2010] and using local soil water content observations
at distinct depths [e.g., De Lannoy et al., 2007a; De Lannoy
et al., 2007b; Monsivais-Huertero et al., 2010; Han et al.,
2012]. The joint estimation of states and parameters by an
EnKF for problems in the unsaturated zone has also been
given an increasing attention lately [Monsivais-Huertero
et al., 2010; Li and Ren, 2011; Wu and Margulis, 2011].
Monsivais-Huertero et al. [2010] used a bucket-type model
for the water balance in the unsaturated zone to update both
soil moisture states and model parameters for both real and
synthetic observations, while both Wu and Margulis [2011]
and Li and Ren [2011] used models based on the Richards
equation for water flow in the unsaturated zone for the same
purpose. Wu and Margulis [2011] assimilated soil moisture
observations to successfully estimate hydraulic parameters
for both a homogeneous and a layered synthetic test case. Li
and Ren [2011], on the other hand, used pressure head obser-
vations to estimate parameters for a wide range of synthetic
soils, and showed that the EnKF can be a potentially useful
method, but also that certain setups provided erroneous
results. Despite using different observations, both Li and Ren
[2011] and Wu and Margulis [2011] used models that have
primary variables that are identical to the observed states.

[5] An important decision connected with any type of
modeling and the observations taken is to what extent the
model should capture details in both the medium’s struc-
ture and the processes in the system and to what extent they
can be simplified. Naturally, the more details of the real
system are captured the better it can model reality, but lack
of information and use of simplified models will always
lead to nonperfect results when modeling a real system.
This is known as model structure error, or model structural
adequacy, as suggested by Gupta et al. [2012] in their
recent review of model adequacy. In unsaturated zone mod-
eling, it has been shown that using insufficient spatial struc-
ture (e.g., not resolving soil layers) can create models that
cannot mimic the true system [e.g., Erdal et al., 2012]. Yet,
a model without resolved structure might be adequate to
predict the average behavior of the system, such as the total
outflow. It might also be that a nonstructured model is
required for reasons of computation time or because the
structure is unknown and cannot be obtained from observa-
tions. In this case, as outlined above, the observations used
to control the model might have length scales that are
smaller than a volume representative for the mean behavior
of the system. For example, a TDR probe might be located
in one layer and does not give information about the water
content averaged over several layers. If the layered struc-
ture is not resolved in the model, this results in a structure
error that can be regarded as a consistent mismatch
between observations and modeling results.

[6] Erdal et al. [2012] suggested to include error models
to correct for bias during a batch calibration process for
such a scenario. In the EnKF community, bias correction is
common (though not aiming at nonresolved medium

structure) and discussed, for example, by Dee and Da Silva
[1998]. It has been used previously in both groundwater
[e.g., Dr�ecourt et al., 2006; Kollat et al., 2011] and ocean
modeling [e.g., Deng et al., 2011], but also to correct soil
moisture simulations [e.g., De Lannoy et al., 2007a,
2007b]. There are two common ways for treating a bias
correction within a filter [Dr�ecourt et al., 2006]. Either the
bias is treated with a separated filter, as is for example done
by Friedland [1969] or De Lannoy et al. [2007a], or it is
treated as a colored noise within the current filter. The latter
idea was introduced by Madsen and Canizares [1999] and
a comparison of the two methods has been performed by
Dr�ecourt et al. [2006]. The authors found that both treat-
ments improved a groundwater model when different
biases were added.

[7] In this paper, we investigate how to deal with model
inadequacy in unsaturated zone data assimilation. We con-
sider in particular model inadequacy due to layered soil struc-
ture, which is difficult to recover as only few local
observations are available (which is a typical situation in
unsaturated flow modeling). For this purpose, we use the con-
cept of a colored noise filter in an EnKF with a homogeneous
Richards model to describe water flow in the unsaturated
zone with layered structure, where the bias is supposed to
correct for the nonresolved soil structure. We update model
parameters, model states (here pressure heads) and bias
terms. In difference to the previous works mentioned above,
we apply the EnKF using a nonlinear relation between model
states (pressure heads) and model observations (soil water
content), where the shape of the relation function is con-
trolled by the simultaneously estimated parameters. As con-
tinuous observations are usually not easily available in the
subsurface, the question of predictions for time spans without
observations is quite important. This question is strongly
related to the parameter estimates in the model. We discuss
the performance of different model approaches for predic-
tions during longer time spans without observations and the
related parameter updates in these models. To test different
modeling approaches, we consider both artificial and real test
cases in layered media. We assume that time series of only
few observations are available, which have an observation
volume that is significantly smaller than the system. In sum-
mary, the paper addresses the following questions:

[8] Can a simplified model for flow in the unsaturated
zone be improved with bias corrections within the EnKF to
predict the local and the average behavior, such as the mass
of water in the system, of a more complicated system? The
simplification concerns both nonresolved structure and sim-
plified parameterization of the flow model.

[9] 1. Can the resulting bias correction parameter be
interpreted in a meaningful way? Can it be used to get
information about nonresolved structure?

[10] 2. How severe are uncertainties in the prior informa-
tion about the medium’s structure?

2. Methods

[11] As outlined in section 1, we test an EnKF to make
predictions of variables in the unsaturated zone using meas-
urements with an observation volume that is considerably
smaller than the system and using a model that simplifies
reality. Simplifications are due to a simple parameterization
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of the models and nonresolved subsurface layering struc-
ture. Two data sets are used in this paper. First, observa-
tions from two virtual (synthetic) lysimeters are used to
perform the development and testing of the data assimila-
tion methods using bias correction. These data are
explained in section 2.4. Here, we predict the total mass of
the lysimeter as well as water content at the observation
locations, using water content data taken from TDR probes.
Second, the method is validated using a real data set from
four TDR probes in a layered soil that has previously been
used and calibrated with good results by Wollschl€ager
et al. [2009]. This data set is explained in section 2.5, and
here both observations and predictions are local water con-
tent measurements from TDR probes.

2.1. Ensemble Kalman Filter

[12] The Ensemble Kalman Filter [Evensen, 1994, 2003]
can be described as a sequential data assimilation scheme,
in which a state vector is sequentially updated based on a
finite ensemble Monte Carlo approximation of the covari-
ance between model states and model observations. An
ensemble of Nens state vectors (containing for example the
primary variables) is initiated. At time tn, the state vector x
of ensemble member j can be propagated forward from the
previous assimilation time tn21:

xðjÞ;fn 5f ðxðjÞ;an21Þ1qðjÞn

yðjÞn 5gðxðjÞ;fn Þ1rðjÞn

(1)

where f is the model (here the Richards equation, equation
(8)), q is the process noise, y is the observation vector,
meaning here the vector of modeled observations, g is the
observation model (here equation (10)), and r is the obser-
vation noise. The indices a and f stand for analysis and
forecast, respectively, and equation (1) is therefore known
as the forecast step. The analysis step consists of updating
the states according to a comparison of modeled and
observed variables:

xðjÞ;an 5xðjÞ;fn 1KnðyðobsÞ
n 2yðjÞn Þ (2)

where K is the Kalman gain and y(obs) is the real (true)
observation vector, while y(j) is the modeled (simulated)
observation vector. The Kalman gain is calculated as:

K5
Pxy

Pyy1R
(3)

where Pxy is the estimated error cross-covariance matrix
between the states and the observations, Pyy is the esti-
mated covariance of the observations, and R is a matrix
with the variance of the observation error on the main diag-
onal. Both covariance matrices are estimated from the
ensemble of realizations:

Pxy 5
1

Nens21
ExðEyÞT

Pyy 5
1

Nens21
EyðEyÞT

(4)

where Nens is the size of the ensemble, Ex5½xð1Þ;f 2xf ; . . . ;
xðNensÞ;f 2xf � is the ensemble error matrix, where xf is the

ensemble mean, and Ey5½yð1Þ2y; . . . ; yðNensÞ2y� is the
observation error matrix. From the build up of the EnKF, it
is obvious that the quality of the estimates depends on the
ensemble size.

2.1.1. State and Parameter Estimation
[13] When considering a solution to the Richards equa-

tion, also a choice of flow model parameter values must be
selected (see later section 2.3 and equations (9) and (10)).
Since these parameters are difficult to select without prior
information, they are also required to be estimated by the
EnKF.

[14] As outlined in section 1, the estimation of parame-
ters is an important point for predictions during time peri-
ods without observations. The most straight forward way of
updating parameters is to expand the state vector (x) to
include both parameters (/) and primary model variables

(here pressure heads (h)), so that xðjÞ5½/ðjÞ; hðjÞ�T . This is
commonly known as a joint parameter and state estimation
and the approach has, for example, been used successfully
by Hendricks Franssen and Kinzelbach [2008], Monsivais-
Huertero et al. [2010], and Li and Ren [2011]. The initial
sampling of parameters in this work was done uniformly
from a range that is limited to physically reasonable values
using the Latin Hypercube method [McKay et al., 1979].

2.1.2. Filter Tuning
[15] To limit the impact of very large state updates, a so-

called dampening factor is applied to the Kalman gain. The
dampening factor is a number between 0 and 1 that is mul-
tiplied with the Kalman gain. In this work, a dampening of
0.3 is applied to the part of the Kalman gain that controls
the parameter updates. This is done to ensure a more stable
parameter update that does not create jumps across the full
parameter space in just one (potentially erroneous) update.
This application of the dampening factor is similar to the
dampening successfully used by Hendricks Franssen and
Kinzelbach [2008].

2.2. Bias Correction

[16] It has been shown many times that it is problematic
to fit a homogeneous model to a heterogeneous reality
[e.g., Durner et al., 2007; Ines and Mohanty, 2008a]. Dif-
ferent approaches on how to deal with this problem have
been suggested in the literature. One approach to deal with
missing spatial structure is to estimate a fully layered
model from the given data [e.g., Shin et al., 2012], as done
in our first and second models explained in section 2.4.3.
Another approach is to introduce a bias term to a homoge-
neous model. In this paper, we use the concept of the col-
ored noise filter [Madsen and Canizares, 1999], in which a
bias term is applied in the filter and estimated as part of the
state vector. This creates a state vector consisting of param-
eters (/), pressure heads (h), and bias terms (b) that are
updated in the EnKF.

x5½/; h; b�T (5)

[17] When implementing the bias corrections for a solu-
tion to the Richards equation taking into account a nonlin-
ear relation between the states and the observations, there
are three ways one can follow. The first way is to add the
bias directly to the observations and perform no bias
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correction on the states. The second is to apply the bias
directly to the states and the third is to apply the bias to the
observations with a feedback to the state. The first way is
not expected to work, since the bias that acts only on the
observations has no direct contact with the states, and
hence there is no correlation between the bias corrections
and the states. Therefore, this bias correction would only
have an impact on the system at the few observation loca-
tions [De Lannoy et al., 2007b] and hardly on the whole
system. In this work, the second way is used. The applica-
tion of a bias correction acting directly on the states alters
the original forecast equation (equation (1)) into:

bn5bn211wn

hn5f ð½/n21; hn21�T Þ1bn1qn

yn5gð½/n21; hn�T Þ1rn

(6)

where wn is the bias noise. This means that the number of
bias parameters needed is the number of states in the
model. For the purpose of better understanding the bias cor-
rections, the third of the error models is also presented
here:

hint5f ð½/n21; hn21�T Þ1qn

bn5bn211wn

yint5gð½/n21; hint�T Þ1bn

hn5g21ðyintÞ

yn5yintðzobsÞ1rn

(7)

where yint is the intermediate observation vector of the
same size as the pressure head vector, g21 is the inverse of
the observation model (here equation (10)), and zobs is the
index of the observation nodes. Although the last method
(equation (7)) is not followed in this paper, it has been
tested and generally leads to similar results as the first
method (equation (6)).

[18] The physical interpretation of the bias corrections is
that it can remove or add water in each cell of the numeri-
cal model as a means to compensate for the unresolved
structure. Hence, the bias corrections can be seen as a,
potentially time dependent, sink or source term. However,
in difference to the numerical model of the Richards equa-
tion, no conservation of mass is required from the bias cor-
rections, meaning that the total mass of the system can be
altered when the bias corrections are applied. This potential
breaking of the mass conservation of the numerical model
is, however, not unique for the bias corrections. It is, in
fact, an inherent feature of EnKF state updates, where no
mass is guarantied to be conserved, even if the bias correc-
tion is not used. If the bias corrections are considered as
source/sink terms, it is logical to apply them also during
predictions, as the problem of the unresolved structure is as
present during the predictions (no observations) as during
the filtering (with observations). Here, an addition/subtrac-
tion of mass resulting from the bias corrections could lead
to systematic overprediction/underprediction of the total
mass if the periods between the observations are long and
the bias corrections are poorly defined. This problem is
further discussed in section 4.

[19] The noise of the system is controlled by the three
noise variables known as the process noise q, the observa-
tion error r, and the bias noise w. As is commonly done, the
observation error is assumed to be Gaussian white noise
[Doherty and Welter, 2010], in all cases used here with a
standard deviation of 1022, since this corresponds to the
noise added to the perfect virtual reality measurements.
Also the process noise, that is supposed to cover for errors
in the model setup, such as in the cases shown here, when
the model parameterization is simplified, is assumed to be a
Gaussian white noise. As described above, the bias can be
viewed as a colored noise, in which b is the nonzero mean
and w is a random white noise. From the derivation of the
EnKF, it is clear that the filter cannot update any states that
have no correlation with the observations. Since the bias
corrections are added after the simulation model (f in equa-
tion (6)) is run, the bias corrections can be split into two
categories. The bias corrections that are on the same loca-
tion as the observations will be strongly correlated with the
observations, whilst the correlation between all other bias
corrections and the observations would be extremely weak,
for practical use considered as nonexisting. This makes it
impossible for the filter to update any other bias terms than
the ones located exactly at an observation location [De
Lannoy et al., 2007b]. This creates a problem, as no bias
correction would occur in most of the medium and
only additional noise (the bias noise) would be added to
the states. The problem is circumvented here by imposing
a strong spatial correlation when generating the bias
noise (w).

[20] The setup of the correlation assumes a Gaussian
spatial correlation function with a correlation length of
75% of the length of the medium. The correlation is
imposed during the generation of the noise, such that the
noise on each of the bias correction locations correlates
with the noise at the other bias correction locations. Hence,
when calculating the correlations (equation (4)), any bias
correction would have a correlation with one of the four
bias corrections that are at a measurement location and,
subsequently, any bias correction correlates with an obser-
vation. The use of a strong spatial correlation, such as the
one used here, has been shown by Dr�ecourt et al. [2006] to
be advantageous when dealing with spatial errors. A differ-
ent implementation of the correlation structure, in which a
layering structure is considered, is also presented in Appen-
dix A.

2.3. Flow Model

[21] Flow in the unsaturated zone is modeled with the
Richards equation,

@HðhÞ
@t

2r � ðKuðhÞðrh11ÞÞ50 (8)

where H (m3/m3) is the water content, Ku (m/s) is the
unsaturated hydraulic conductivity, h (m) is the water pres-
sure head (negative for unsaturated conditions), and 1 is the
unit vector in the z-direction positive upward. The relations
between the water content and the pressure head and
between the unsaturated hydraulic conductivity have to be
modeled explicitly. In this paper, we consider two formula-
tions. In the equations below, all positive pressure heads
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are implicitly assumed to result in full water saturation.
The first parameterization model is the Mualem-van Gen-
uchten formulation [van Genuchten, 1980; Mualem, 1976]

Se5
1

½11ðaVGjhjÞn�m

Ku5Ks½12ð12S1=m
e Þm�2S0:5

e

(9)

where Se (–) is the saturation, which relates to water content as
H5nf Se; nf being the porosity of the soil, aVG (m21), n (–),
and m (–) are the parameters, with m 5 121/n, and Ks (m/s) is
the saturated hydraulic conductivity. Residual saturations are
here neglected for simplicity.

[22] The second parameterization model is the so-called
Gardner-Russo model [Gardner, 1958; Russo, 1988],

Se5½e20:5aGRjhjð110:5aGRjhjÞ�2=2:5

Ku5KseaGR jhj
(10)

where aGR (m21) is a shape parameter. As can be seen
from the smaller number of parameters in the Gardner-
Russo model, this function is a strong simplification of the
more complex van Genuchten function. To highlight the
difference between the two parameterization models, an
example is shown in Figure 1. More detailed comparisons
between the two parameterization models can be found for
example in Zhu and Mohanty [2003] and Zhu et al. [2007].

[23] It is, here, in relation to the filtering problem, impor-
tant to point out that since any positive pressure head in the
Richards equation represents a fully saturated soil (Se 5 1),
there can be a nonunique relation between pressure and sat-
uration. This is, for example, the case when an infiltration
is applied that is larger than the saturated hydraulic conduc-
tivity of the soil.

[24] The flow equation (8) is solved using a finite volume
approach on a nonuniform grid. An implicit Euler scheme
is used for the time discretization and the nonlinearities are
treated with a Newton-Raphson scheme with line search.

2.4. Virtual Reality Data

[25] To explore the capabilities of different EnKF mod-
els in unsaturated zone modeling, two virtual reality (VR)
cases were set up. The conceptualization of the VR models
are shown in Figure 2 and the total mass (water weight plus
3000 kg soil matrix) of the VR lysimeters are shown in

Figure 3. The VR are set up in accordance to real lysime-
ters with layering structure [e.g., Meissner et al., 2010;
Fank and von Unold, 2005]. We used here the lysimeter
placed in Wagna (Austria) that is described in Fank and von
Unold [2005]. The TDR observations from this lysimeter
were, however, not used, as evapotranspiration fluxes on the
vegetated surface were not controlled and the numerical
modeling of the bottom boundary condition was unclear.
Instead, we use the real precipitation data in combination
with a simplified evapotranspiration flux and synthetic
observations for the lysimeter masses as described below.

[26] The lysimeters have a height of 2 m and both virtual
reality data sets (referenced as VR-A and VR-B) are set up
to mimic the real lysimeter with two soil layers and a
coarse gravel layer at the bottom. The first virtual reality,
which is most similar to the real lysimeter, consists of two
different sands. The second reality, created to have more
contrasts between the water content in the two soil layers,
consists of a sand and a loam. All simulation parameters
for the VR data sets use the van Genuchten parameteriza-
tion (equation (9)) and the values can be found in Table 1.

[27] The VR models are calculated with the numerical
model explained above, using a grid with 245 cells with a
spatial discretization varying from 0.1 (top) to 1 (bottom)
cm. The VR models are run for 1 year and the available
data are divided into three periods, shown in Figure 3.
Here, the EnKF is used from day 10 to day 280 (filter
period) and the time from day 281 to day 363 is used for
the prediction (where the filter is turned off). The first 10
days are the burn-in period.

2.4.1. Boundary Conditions and Forcings
[28] The upper boundary condition is simulated as a flux

using a real time series of daily precipitation from the
Wagna data set (see Figure 3) combined with a fixed (low)
evaporation rate (10210 m/s). The bottom is simulated
using an open boundary. This particular bottom boundary
condition is implemented in the numerical flow model in
such a way that the flow from the coarse gravel layer is
either set to gravity outflow, if the bottom cell is fully satu-
rated, or otherwise is switched off (no flow).

2.4.2. Observations
[29] Observations of water content, the same information

as would be available from TDR probes in a real data set,
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Figure 1. Example of the two parameterization models
shown in equations (9) and (10). The example uses the
parameter values aVG 5 aGR 5 1 m21 and n 5 2.

Figure 2. Visualization of the conceptual lysimeter, the
virtual reality, and the two models used in the filter
problems.
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are taken at four depths (see Figure 2) once per day. The
observation volume of the TDR probes is 1 cm. A measure-
ment error consisting of white noise with the standard devi-
ation of 0.01 is added to all water content measurements to
mimic a measurement device error. Since we want to pre-
dict the average behavior of the lysimeter, the total weight
(Figure 3) is the validation observation of primary interest.
To avoid problems arising from a simplified parameteriza-
tion of the bottom gravel layer, which is here only consid-
ered as a boundary with fixed parameters, all masses are
calculated ignoring any water present in this layer.
2.4.3. Simulation Models

[30] For the EnKF data assimilation and prediction simu-
lations, we compare two different flow model setups. The
first setup is a two-layered model, like the true model (Fig-
ure 2), but with a simplified parameterization (equation
(10) instead of (9)). This model is close to the reality it is
supposed to predict. It is assumed that the structure of the
soil, meaning the depths of the layer boundaries, is known
exactly and only the parameterization is unclear. The
parameterization chosen for data assimilation does not cap-
ture all features of the virtual reality model. Note that if we
had chosen the same parameterization for the data assimila-
tion model, the predictions should meet the virtual observa-
tions and parameters exactly and it is only a question of
ensemble size of the EnKF and sensitivity of the observa-
tions on the parameters to get there. The different parame-
terization models create a true model error that is clearly
different from Gaussian errors.

[31] As the knowledge of structure in reality is very diffi-
cult to obtain, we use a second model for data assimilation
and prediction, which is identical to the first model

described above. Only the interface is wrongly assumed to
be at 0.45 m below the soil surface whilst in the virtual
reality the interface is in fact at 0.65 m below soil surface.

[32] The third simulation model setup consists of only
one homogeneous layer and also uses the simplified param-
eterization. This model is an example of the case described
in section 1, where the detailed structure of the soil should
or could not be included in the simulation model. Such
models are used, for example, to predict the average behav-
ior of the system. This model has a severe structural model
error and naturally one would expect that this is problem-
atic, since observations are taken only at four locations.
The ratio between observations and model states (pressure
heads) is hence very low. This, however, is not unlikely for
such a system and the full observation setup is identical to
the one used for the real lysimeter.

[33] To mitigate this error, we explore the use of the bias
correction in the fourth simulation model. The model is set
up as the third model, but a bias correction is added that is
meant to correct for the mismatch due to the nonresolved
structure.

[34] All simulation models are, apart from the parame-
terization and the internal structure, set up identically to the
VR simulations. This means that, for example, the model
forcings are perfect in the simulation models. For the
parameter estimation, all three parameters in the simulation
models are estimated: saturated hydraulic conductivity
(Ksat), aGR, and the porosity of one or two materials,
respectively.

2.5. Real Data

[35] For the real data simulations, we use a 1 year time
series of TDR measurements obtained from a layered field
soil at the Grenzhof Test Site, SW Germany. The site and
data are described in detail in Wollschl€ager et al. [2009].
Hence, only a brief summary is provided here.

[36] The soil profile at the Grenzhof Test Site consists of
four layers (0–0.28, 0.28–0.82, 0.82–1.10, and 1.10–1.54 m
below surface) which all can be classified as sandy loam
[Soil Survey Division Staff, 1993]. They are underlain by
fluvial gravels and sands starting at 1.54 m depth. The soil
surface at the top of the profile was covered with grass
which was regularly cut to a height of a few centimeters.
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Figure 3. Total mass over time of the two virtual reality simulations together with the precipitation
used as top flow boundary.

Table 1. Setup of the Virtual Realities

Ksat (m/s) a (1/m) n (–) Hsatðm3=m3Þ

VR-A
Top 1.73 3 1025 10 2.1 0.36
Bottom 5.8 3 1024 36 1.7 0.22
VR-B
Top 1.73 3 1025 10 2.1 0.36
Bottom 3.6 3 1026 3.6 1.5 0.43
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2.5.1. Boundary Conditions and Forcings
[37] The atmospheric upper boundary condition was

measured onsite by an automatic weather station. Refer-
ence evapotranspiration was calculated using the Food and
Agriculture Organization (FAO) Penman-Monteith equa-
tion [Allen et al., 1998]. The lower-boundary condition is
represented by a hypothetical groundwater table located at
4 m depth which is far below the TDR measurements of
interest.

2.5.2. Observations
[38] Volumetric soil water content was measured with

TDR at four depths (0.13, 0.63, 0.92, and 1.16 m) where
one sensor was placed in each of the uppermost four soil
layers. Volumetric water contents at each depth were esti-
mated from the measured dielectric permittivities and tem-
perature corrected according to Roth et al. [1990] using soil
temperature measurements from a nearby profile.

2.5.3. Simulation Models
[39] The model was used to simulate the daily average

soil water contents at the Grenzhof Test Site. It follows the
setup described in Wollschl€ager et al. [2009]. The numeri-
cal model was set up with a uniform grid consisting of 400
cells of which the top 154 were considered for the assimila-
tion and the bottom 246, which represent the gravel and
sand layers and where no TDR measurements were avail-
able, were kept without updating. Initial and boundary con-
ditions were the same as described in Wollschl€ager et al.
[2009] with the simplification that the evapotranspiration
flux was already scaled by the factor of 0.61 [see
Wollschl€ager et al., 2009] and the distributed root water
uptake was neglected. Instead, the complete flux across the
upper boundary was exchanged via the uppermost cell of
the model grid. Instead of resolving the layering, we use
the homogeneous model only (third and fourth model set-
ups in section 2.4.3). A calibration for the four-layered
model has been carried out by Wollschl€ager et al. [2009].

[40] Two different setups of the homogeneous models
with and without bias corrections were tested. The first
uses the simpler parameter model of Gardner and Russo
(equation (3)) and the second setup uses the van Genuchten
model (equation (9)). As was done in Wollschl€ager et al.
[2009], we do not estimate the porosity, but set it to the
measured values, leaving the two setups with 3 and 2 esti-
mation parameters, respectively.

2.6. EnKF Simulations and Evaluation Setup

[41] For the evaluation of the data assimilation with the
different models introduced in section 2.4.3, data assimila-
tion results are compared to the VR and real data observa-
tions. Two different measurement types, taken in the
prediction period (cf. Figure 3), are used in this paper. First,
the total mass of the system is compared. Second, the water
content at the point of the measurements is compared. For
the real data, since no total mass is available, only the pre-
dictions of the water content are used for the evaluation.
The performance of the EnKF simulation is quantified
using the root mean square error (RMSE) of the ensemble
mean of the interested quantity (mass or water content) dur-
ing the prediction period:

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Npred

XtT

n5tT2X

ðQðsÞn 2QðtÞn Þ
2

vuut (11)

where Npred5tT 2tT2X is the length of the prediction period

(cf. Figure 3), Q
ðsÞ
n is the ensemble mean of the interested

quantity at time n, and QðtÞn represents the true quantity of
the system at time n. There is no unique measure to quan-
tify the performance of the simulations and one could also
consider the deviations between modeled and actual mass
of the system over the whole time period. We decided to
use only the prediction time period, as we see the predic-
tion in periods without observations as an important task
for a model. In subsurface systems, the situation that obser-
vations are continuously available over very long time peri-
ods are rare.

[42] When using any ensemble-based method, a crucial
filter parameter to decide on is the size of the ensemble. In
principle, the ensemble size should be larger than the effec-
tive number of degrees of freedom. In general, the larger
the ensemble, the better the approximation of the covarian-
ces becomes and the more appropriate the update is. A
smaller ensemble, on the other hand, is often needed due to
computational restrictions. In this work, an ensemble sizes
of 1000 ensemble members and is considered large enough
to give a consistent result when the assimilation is repeated.
To assure that the ensemble is large enough, all simulations
are repeated 10 times, though (since they are similar) only
one example is shown in the results. The topic of ensemble
size is further discussed in Appendix A.

[43] When using the EnKF to estimate states and parame-
ters for the strongly nonlinear Richards equation, certain
problems have been noted by the authors. The combination
of low conductivity and an evaporation top boundary condi-
tion leads in the numerical flow model to large negative
pressure heads. During a parameter estimation in the EnKF,
these large negative pressure heads are at risk to be com-
bined with rather small pressure heads. The mean of the
ensemble of states will then strongly be influenced by the
few strongly negative heads. Since the updates of the EnKF
are based around the ensemble mean, this can result in large
state updates that create enormous positive (unphysical)
pressure heads. This, in turn, cannot be detected as poor pre-
diction by the observations, since any positive pressure head
only results in full saturation (Se 5 1), independent of its
value. This effect may lead to severe problems in the filter-
ing and larger ensemble sizes cannot solve this issue. It is a
real problem of the nonlinearity of the model.

[44] The issue is interesting and will require more investi-
gation, but in this paper, the unwanted effect is kept negligi-
ble by limiting the initial sampling (please note: only the
initial sampling) of the hydraulic conductivity to a mini-
mum of Ks 5 1026 m/s and by limiting the negative pres-
sure heads arising from evaporation to h 5 210 m.
Although the limiting value may seem very low, it did not
change the general result presented here, but only served to
make the result consistent when repeating large ensemble
simulations.

[45] As outlined above, a large selection of different data
assimilation setups are used in this paper. All tested setups
are summarized in Table 2.
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3. Results

3.1. One-Layered and Two-Layered Flow Models

[46] The first assimilations are performed using a simula-
tion model with one layer (no bias correction), using a two-
layered model with a correctly placed interface and using a
two-layered model with a misplaced interface. This corre-
sponds to the first, second, and third setups outlined in sec-
tion 2.4.3 and to case numbers 1, 2, and 3 in Table 2. These
three cases are compared to estimate the performance of a
classical EnKF with the parameter update using a model
where structure is not resolved, a model with the perfect
structure and a model where it is assumed that the structure
is known, but is wrong. The result from these so called
original simulations is shown in Figure 4. It shows the
mass of the lysimeter over time, for a full year, indicating
the mass of each ensemble member together with the
ensemble mean mass and the true mass. The resulting
RMSE-values for each of the cases are shown in Table 3.

[47] From Figure 4 and Table 3, it is clear that the pre-
dicted masses in the one-layered model have very little in
common with the mass of the true system (RMSE: 124.5).
This is expected, as the model is a strong simplification of
the true system. The model inadequacy due to the simpli-
fied parameterization is not severe, but the inadequacy due
to the nonresolved structure leads to very poor perform-
ance. The correctly set up two-layered model, on the other
hand, can well approximate the true mass of the system
(RMSE: 6.8). The incorrectly set up two-layered model
shows, in difference to the one set up correctly, a very poor
performance (RMSE: 345.7). So the model inadequacy due
to the wrong structure is here as severe as that one caused
by ignoring the structure in the first place. This exemplifies
how important it is to know the details of the modeled sys-
tem correctly, here where the layer interface is placed,
when using a more complex model.

3.2. Use of Bias Corrections

[48] It is now tested, whether and to what extent bias cor-
rection can compensate for the model inadequacy when a
model without spatial structure is used. The bias correction
acting directly on the model states, described in equation
(6), is considered. This corresponds to the fourth setup
described in section 2.4.3 and case 4 in Table 2. The result
is shown in Figure 5 and Table 3. As can be seen when

comparing Figures 4 and 5, the performance of the flow
model is improving when using the bias correction. It
should be noted from Figure 5 that even though the spread
of the ensemble is rather large during the prediction period,
the mean of the ensemble is still a reasonable prediction of
the total mass (RMSE: 34.3), far better than a one-layered
model without the bias corrections, though naturally not as
good as the perfect two-layered model. It is also important
that the dynamic behavior of the system is now reproduced
well, despite the offset seen in Figure 5.

[49] In Figure 5, the masses of the lysimeter are com-
pared, in order to address the question if the averaged
behavior of the system can be predicted from the local

Table 2. Setup of Used Simulation Scenariosa

Data Simulation Layers Parameter Model Bias

Case 1 VR-A 1 GR No
Case 2 VR-A 2 GR No
Case 3 VR-A 2-incorr. GR No
Case 4 VR-A 1 GR Yes
Case 5 VR-B 1 GR No
Case 6 VR-B 2 GR No
Case 7 VR-B 1 GR Yes
Case 8 RD 1 GR No
Case 9 RD 1 GR Yes
Case 10 RD 1 VG Yes

aRD is the real data, simulation layers signifies the number of soil layers
in the numerical flow model, 2-incorr means the two-layered simulation
model with the incorrectly placed interface, GR is the Gardner-Russo
parameter model, and VG is the van Genuchten parameter model.
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Figure 4. EnKF simulation result of the total masses
using a one-layered model without bias correction (case 1),
a two-layered model with correct interfaces (case 2), and a
two-layered model with incorrect interface (case 3). Gray
areas show the spread of the ensemble and red lines are the
ensemble mean. The black lines mark the true mass and the
vertical lines mark the start and end of the filtering period.

Table 3. Resulting RMSE of Used Simulation Scenariosa

Total Mass (kg) Water Content (–)

Case 1 124.5 0.045
Case 2 6.8 0.008
Case 3 345.7 0.238
Case 4 34.3 0.017
Case 5 126.3 0.136
Case 6 17.8 0.007
Case 7 24.7 0.018
Case 8 – 0.048
Case 9 – 0.008
Case 10 – 0.009

aShown is the RMSE value (equation (11)) for the prediction period. For
the water content, the value is taken as an average over the four measure-
ments. For comparison, the RMSE values of the true signal to its temporal
mean is 21 and 0.016 (mass and water content, respectively) for VR-A, 33
and 0.020 for VR-B, and 0.026 for the real data.
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observations in a heterogeneous setting. However, depend-
ing on the problem, one might also want to predict the local
states that are measured. One would expect that this predic-
tion is less problematic than the mean behavior of the sys-
tem. Figure 6 shows the water content at each of the
measurement locations for the case of using a correct two-
layered model and the one-layered model with and without
the bias corrections (cases 2, 4, and 1, Table 2). It becomes
clear from the figure that the water content is estimated
similarly well by all simulation models during the filtering
period, which simply means that the filter controls the
water content with the state updates. As long as observa-
tions are available, the model mismatches are not so severe.
In the prediction period, predictions made with the
two-layered model are stable and well fitting the true water

content for all measurements. This is expected, since the
simulation model is very similar to the virtual reality. The
one-layered model without the bias, however, is a poor
simulation model for the water content in the prediction
period. The one-layered model with the bias correction
leads to a good prediction of the water content at the two
uppermost measurement depths, whilst the prediction of
the lower measurements comes with a larger spread of the
ensemble. The good performance on the uppermost meas-
urements is showing the strength of the bias correction
method, whilst the bottom measurement (180 cm) is show-
ing a large spread of the ensemble due to the uncertain
value of the bias correction at the bottom of the domain
(see further the discussion about the resulting bias correc-
tions below). To be noted is that even though the spread of
the ensemble is large in the prediction when using the bias
corrections, which can indicate that the bias corrections are
far from optimal, the mean of the ensemble is always close
to the true water content.

[50] It is interesting to note that even though the one-
layered model without a bias correction has a reasonable
value of the water content during the filter period (Figure
6), it does not resolve well the total mass (Figure 4). This is
most likely related to the poor performance of the estimated
parameters, which is further discussed in section 3.4. The
misfit in the masses shows how important it is to have other
measures of performance for a filter method then just the
measurements that have been used for assimilation when
robustness is an issue.

[51] It is clear from the previous section that the two-
layered model can perform very well when the layer is cor-
rectly placed but when the layer is misplaced the simulation
result is not satisfactorily. The poor performance of the
two-layered incorrect model is by no means surprising,
since a misplacement of 1/4 of the observations is a rather
severe mistake. It is noticeable that the result of the one-
layered model with bias (Figure 5) is clearly better per-
forming than the two-layered incorrect model (Figure 4).
This suggests that, rather than guessing the placement of
the layer interface, a simpler model with a bias correction
can be used with better result. One could interpret the
results in the way that the perfect structure model has
the smallest errors, the structured model with the wrong
structure has the largest errors and the models that ignore
structure and compensate this with a bias correction are in-
between (Table 3).

3.3. Virtual Reality B

[52] The results discussed above have been obtained for
one setup of a layered model. In order to test if they can be
reproduced in a different setting, we compare the same
measures as discussed above for the virtual reality model B
(VR-B). In this model, the material properties are different
from VR-A. The VR-B has a stronger contrast between the
water contents of the two materials, and it should therefore
be more difficult for the filter with the one-layer model to
make good predictions of the mass of the system. In addi-
tion to the increased contrast, the order of the layers is
reversed, so that the VR-B has the finer material at the bot-
tom. The VR-B is also used to analyze the information con-
tained in the bias term, however, this aspect will be
discussed in section 3.6.
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Figure 5. EnKF simulation result of the total masses
using a one-layered model with bias correction (case 4).
Gray areas show the spread of the ensemble, and red lines
are the ensemble mean. The black lines mark the true mass
and the vertical lines mark the start and end of the filtering
period.
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Figure 6. Water content as a function of time at each of
the four measurement depths. The dashed lines mark the
envelope of the ensemble, the solid lines the mean of the
ensemble, and the black lines mark the true water content.
The vertical lines mark the start and end of the filtering
period.
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[53] As the performance using this virtual reality is simi-
lar to the previous one, we only show here the comparison
of the total mass of the system in Figure 7, where the
results of cases 5–7 in Table 2 are shown. The one-layered
model without a bias is, as expected, not a good simulation
model. The two-layered model has a rather good perform-
ance, though not as good as in the VR-A (case 2), which
most likely is due to the stronger contrasts in the water con-
tents that makes the simplified parameterization less suita-
ble to model the more complex reality. The one-layered
model with the bias corrections applied has, in difference
to the one-layered model without bias correction, a large
spread of the ensemble but a prediction of the ensemble
mean mass that is similar to the true mass.

3.4. Parameter Estimations

[54] As described in section 2, not only the pressure head
states are updated during the filtering process but also the
flow model parameters. An important aspect of the parame-
ter filtering is whether or not the parameters stabilize in
time around a reasonable final value. If this is the case, the
model with the parameters can be trusted more to capture
the physical processes and to be useful for predictions
where observations are not available. In the case that
parameters do not stabilize and change with time over large
spans of values, the model is more data driven and cannot
be expected to make good predictions when no observa-
tions are available. We found in the test cases discussed
above that for all runs that produce a good result (low
RMSE, see equation (11)), the parameters are also far more

stable than for the cases in which the performance was
poor. In the latter, the parameters showed sudden jumps in
time, or converged to parameter values on the edge of the
allowed ranges. These aspects are shown in Figure 8, where
the development of the estimated parameters for the mean
of the ensembles are plotted against the assimilation time
for cases 1, 2, 4, 5, 6, and 7 (Table 2).

[55] In the lowest plot, the porosity has values very close
to the true porosity values (dashed black lines) for the good
cases, whilst the one-layered model without bias correction
shows an unstable performance. The porosity is straight
forward to compare, since it has the same physical meaning
and definition in all parameterization models. The picture
gets more complicated when interpreting the other two
parameters (alpha parameter and saturated hydraulic con-
ductivity). Since the parameterization is different between
the virtual realities and the EnKF simulations, the alpha
parameters of the two models are not comparable. It is,
however, positive to note that the parameter alpha in the
EnKF simulations is very constant throughout the good
simulations.

[56] The saturated hydraulic conductivity is, as can be
seen from Figure 8, always predicted in the low range. It
can be argued that this is not good, since the saturated con-
ductivity is a material property that has a clear physical
meaning and should therefore have nothing to do with the
parameterization of the unsaturated hydraulic conductivity
function. This, however, is only true at full saturation,
which rarely occurs in the models tested in this paper, and
especially rarely occurs at the observation locations.
Hence, the model becomes insensitive to the hydraulic con-
ductivity at full saturation. The model is, however, not
insensitive to the total (unsaturated) hydraulic conductivity
and therefore the model most likely compensates parts of
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Figure 7. EnKF simulation result of the total masses for
VR-B using a one-layered model without bias correction
(case 5), a two-layered model (case 6), and a one-layered
model with bias correction (case 7). Gray areas show the
spread of the ensemble and red lines are the ensemble
mean. The black lines mark the true mass and the vertical
lines mark the start and end of the filtering period.
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the missing parameterization flexibility (using a Gardner-
Russo model for assimilation, which has a simpler parame-
terization than the van Genuchten model used to create the
virtual realities) by reducing the saturated hydraulic con-
ductivity. Indeed, this can be seen when comparing the
unsaturated hydraulic conductivity curves (not shown) of
the virtual reality model and the EnKF simulation model;
with the saturated hydraulic conductivity resulting from the
EnKF simulation model, the conductivity curve of the
EnKF simulation model is more similar to the conductivity
curve of the VR than if the true hydraulic conductivity
would be used for the EnKF simulation model.

[57] The saturated hydraulic conductivity values
obtained with the EnKF are consistent with the setups of
the virtual realities. The bottom layer in case 2 (EnKF sim-
ulation model for VR-A) is more permeable than the top
layer, and the other way around in case 6 (EnKF simulation
model for VR-B). This reflects the relations in the two vir-
tual realities (Table 1). Further, the hydraulic conductivity
of the bottom layer in the EnKF simulation model for VR-
B (case 6) is by far the lowest conductivity estimated in a
well-performing simulation. This is positive, since this cor-
responds well to the VR setup in which the bottom of the
VR-B has the lowest hydraulic conductivity (Table 1).

[58] The overall consistency, in combination with the
correct parameter relations and reasonable model perform-
ances speaks for the fact that the EnKF simulations have
performed well and are capable of filtering both parame-
ters, states and bias corrections.

3.5. Real Data

[59] In difference to the results shown with the virtual
reality test cases, the real data contains no validation data
other than the water content observation themselves. The
performance of the model can therefore be assessed best
with the observations during the prediction period, where
the filter is turned off. To look more into the prediction
period, the filter problem is set up to have a long assimila-
tion period, followed by a clear break (the prediction
period), which in the end is followed by yet another assimi-
lation. The final assimilation period is used to test the errors
of the predictions during the crossover from the prediction
to the time span where observations are again available.
The result of the data assimilation is shown, for each of the
four depths where TDR measurements of water content are
available, in Figure 9. The resulting parameters are shown
in Figure 10. As can be seen from the figures, the prediction
of the water content using an assimilation without the bias
corrections is, as expected, rather poor. Similarly, the
resulting parameters are close to the allowed boundaries
(which are the same as the extent of the vertical axes in
Figure 10) and show sudden, large, jumps. When the bias
corrections are used, however, the prediction of the water
content improves and the mean of the ensemble is similar
to the measured water content. Though, similar to the VR
cases, the spread of the ensemble is rather large in the
lower layers. Just after the start of the second assimilation
period, the models using the bias corrections directly fit
well to the observations, while the model without a bias
correction takes several days to get back to reasonable val-
ues. The result presented here supports the use of bias

corrections to account for nonresolved medium structure,
also for real field measured data.

[60] When looking at the parameters, the one-layered
Gardner-Russo model without bias is unstable and shows
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Figure 9. Water content as a function of time at each of the
four measurement depths. The dashed lines mark the enve-
lope of the ensemble, the solid lines the mean of the ensem-
ble, and the black lines mark the true water content. The
vertical lines mark the start and end of the filtering period.
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parameters that are close to the allowed boundaries. This is
the same as in the VR cases and does not improve if the
van Genuchten parameter model is used. The parameters
resulting from the assimilations using the bias corrections
are a lot more reasonable. When looking at the alpha
parameter plot (Figure 10), it is important to keep in mind
that the two parameter models are distinctly different and
that the alpha parameter values therefore cannot be com-
pared one to one. When comparing the behavior of the van
Genuchten model with the simpler Gardner-Russo model,
both with bias correction, all parameters are well estimated
in both parameterization models and the prediction per-
formance (Figure 9) is very similar. This suggests that for
the assimilation problem with the bias correction, the use
of a more complex parameterization model has no positive
effect, and the simpler Gardner-Russo model could be
used.

3.6. Analysis of the Bias Correction

[61] A relevant question to ask when using the bias cor-
rection methods to compensate for missing subsurface
structure is if the suggested bias corrections can be mean-
ingfully interpreted. It could be useful, if the bias terms
would allow to infer the variability of, for example, the
water content in the soil. Three examples of the bias param-
eter profiles are shown in Figure 11 for the one-layered
model with the bias correction for VR-A, VR-B, and the
real data (cases 4, 7, and 9 in Table 2). Since the bias cor-
rections used in this paper turned out to be rather station-
ary, only the resulting values at the end of the assimilation
are shown.

[62] When comparing the two virtual realities, the result-
ing bias for the VR-B has higher values, and is mirrored in
comparison with the VR-A bias corrections. This reflects
the structure of the soil, given that the differences between
the two VR models are the contrast of water content
between the two soil layers and the order of these layers.
This is a clear strength of the bias correction as a methodol-
ogy to capture nonresolved substructure in a model, when
small-scale observations are used. The effect of the bias

correction is strongest around the observation that is just
below the true interface. In the VR-A, the bias subtracts
water just below the nonexistent interface and in the VR-B
water is added. This, in regard to what a homogeneous
model on its own would produce (cf. Figure 4), suggests
that the bias corrections resulting from the EnKF simula-
tions can be interpreted as really correcting for the missing
layering structure.

[63] When it comes to the real data, the interpretation is,
as is often the case with the real data, less clear. For a start,
the magnitude of the bias terms is smaller than in the VR
data cases. This can be understood by the far less obvious
contrasts in water content that exists in the real data com-
pared with the VR data. In the paper of Wollschl€ager et al.
[2009], four different layers were used for parameter esti-
mation (one measurement per layer). When comparing
their resulting parameters between the four layers
[Wollschl€ager et al., 2009, Table 3], it is clear that the two
bottom layers are more similar to each other than the two
top ones. Further, it is difficult to say which of the two top
most layers is coarser. When looking at the bias corrections
for the real data in Figure 11, the same trend can be seen.
The bottom is clearly showing a uniform bias correction
trend, whilst the top is different from the bottom and no
clear trend can be seen at the top. This, again, supports
what has been seen in the VR data that the bias corrections
can correct for missing spatial structure.

4. Summary and Discussion

[64] In this paper, we have investigated possibilities to fit
two models with different level of details to two virtual
reality lysimeters and a real field experiment using the
Ensemble Kalman Filter. These models were considered
for predictions in an unsaturated system, where observa-
tions are available for long time periods. We focus on the
case where the observations have a small observation vol-
ume compared to the size of the system. We used observa-
tions of local water content from TDR probes to make
predictions of either the water mass of the whole system or
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the water content at the measurement locations. The tested
models are two two-layered flow models with the simpli-
fied parameterizations and a one-layered flow model, also
with the simplified parameterization. The results for the vir-
tual realities show that the EnKF with the two-layered
model with correct subsurface structure can well predict
the behavior of the true system, while both the two-layered
model with incorrect layering and the one-layered model
on its own are very poor representations of the true system.
When the bias corrections are introduced in the EnKF, a
clear increase in the predictive capability of the one-
layered model is shown. The resulting bias correction con-
tains information about where the largest errors are found
and thus also some information about the unresolved sub-
surface structure.

[65] It should be stressed that the use of an EnKF the
way it is done here is only useful if long time series of
observations are available (possibly with gaps). Only in
such settings is it reasonable to update states as initial con-
dition for the prediction over a given (short) time span,
until a new observation is available. If observations are
only available over a short time span, the model parameters
are the most important factors that need to be estimated as
good as possible, while errors in initial conditions are not
controllable. For such cases, a batch calibration (using all
observations for one optimization) will be the better
approach to estimate these parameters and the advantage of
the sequential EnKF would only be in its efficiency. For
example, in case of a setup similar to the ones discussed
here, it may take some 10,000s of model evaluations for a
successful estimation of the wanted parameters in a Mar-
kov Chain Monte Carlo parameter estimation. In contrast,
we here use 1000 model evaluations for the EnKF. This is,
no doubt, an advantage of the EnKF, but also clearly a
warning. The reduction of model evaluation is not only
beneficial, but may also create large estimation problems if
the estimation problem is not well set up (see further
Appendix A).

[66] Also when states are updated, it has been found to
be an important goal of the EnKF parameter estimation to
find stable parameters. This was demonstrated in the dis-
cussion of the results (Figures 8 and 10). The stable param-
eters achieved with the bias corrections are, however, only
representative for the system under similar conditions as in
the assimilation time. Since the data used in this paper con-
tains rather slow flow processes (observations only once
per day), the estimated retention functions are probably
well matched to the real retention behavior. If the data
would, on the other hand, show strong dynamic behavior,
such as during heavy rainfall after a dry period with some
observations per hour, the effective conductivity behavior
would not be captured by the effective parameters, and the
result would probably look different. An example of a mis-
fit between retention behavior and conductivity behavior
can be seen in the example in Figure 1, where the parame-
ter functions for the Gardner-Russo model and the van
Genuchten model are compared. The retention functions of
the two models are reasonably similar, whilst the hydraulic
conductivity functions are clearly different. The difference
of the relative permeability shown in the figure can be
compensated by adjusting the saturated conductivity, such
that the unsaturated hydraulic conductivity functions (the

product of saturated conductivity and relative permeability)
of the two models become more similar. This is most likely
what is being seen in the EnKF simulations discussed
above, where Ksat is always lower than the true values. If
the model would be used to predict a fast flow event under
wet conditions, which is sensitive to the saturated hydraulic
conductivity, it is to be expected that such a prediction
would be poor. Similarly, if other scenarios are considered,
the formulation of the filter and the bias corrections cannot
be expected to work without first being adopted carefully to
the new scenario. An example is contaminant transport
were the impact of the layering on the transport may rather
result in a time delay than the offset discussed in this work,
and hence the bias corrections would need to compensate
differently.

[67] We have demonstrated with the virtual reality cases
and the real data that nonresolved subsurface structure in
the simulation model can be compensated by bias correc-
tion in the EnKF. Such a bias correction could also be used
in a batch calibration, where model parameters are esti-
mated from the full observation data set. One could also,
here, be interested in calibrating a homogeneous model to
observations in a heterogeneous reality (which means the
goal is to find the effective model parameters). It has been
shown by many authors that this is a difficult task and bias
corrections could, here, also be helpful. For example, Erdal
et al. [2012] used a flow model with bias correction to cali-
brate a homogeneous unsaturated flow model to observa-
tions in a heterogeneous system in a Markov Chain Monte
Carlo (MCMC) framework. In a calibration there can be no
feedback from the bias to the model, as the observations
are not treated sequentially. There are fundamental differ-
ences between using a bias correction in a calibration (with
the aim to find model parameters) and in an EnKF (with the
aim to find model parameters and states for predictions of
the next time step). One important difference is the use of
the bias correction in a prediction.

[68] The bias corrections used in this paper are all
applied both during the assimilation (equivalent to the cali-
bration) and during the prediction period, while in the
model calibration of Erdal et al. [2012], they are only
applied during the calibration. The missing soil structure is,
hence, in the EnKF explicitly taken into account with the
bias in every forward modeling step, also during the predic-
tion. This implies that the longer the prediction period,
hence the longer the time without any update of the EnKF,
the larger the spread of the resulting ensemble becomes.
This may eventually lead to the deterioration of the predic-
tion of the ensemble mean. If, however, the bias corrections
would be removed during the prediction period, the initial
condition for that period would be very wrong and lead to
artifacts such as infiltration fronts stemming from the
‘‘release’’ of a heterogeneous water distribution in a homo-
geneous model. This is not problematic for the calibration
of a model as, once the model is calibrated, the states are
not controlled anymore. The initial condition for a predic-
tion would therefore be chosen according to the homogene-
ous model setup and would not be influenced by spatially
heterogeneous states.

[69] The different use of bias correction in data assimila-
tion and model calibration shows that it is important to
know the purpose of the modeling to judge about
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appropriate bias estimate models. If the purpose is predic-
tion of fully unknown scenarios, the calibration with a bias
model used by Erdal et al. [2012] would be the better
choice. If the purpose is prediction for shorter time frames
and with continuous assignment of data, the EnKF with
bias corrections explored in this paper would be a good
choice.

[70] The resulting bias corrections shown in this work
does well resolve the structure of the true system. How to
extract the true soil structure from the bias corrections is,
though, not obvious, especially for more complicated sys-
tems. What can be said is rather which of the observations
are placed in soils that are more similar to each other, since
these observations would result in similar bias corrections.
In this work, for example, the two upper bias correction
values in the VR cases show similar values, which corre-
sponds well with them being placed in the same layer. It
would, however, not be possible to detect from the bias cor-
rections where the layer boundary is, only that the two top
observations are different to the two lower ones.

[71] A final remark regarding the resulting bias correc-
tions is that though, in the cases discussed above, they sta-
bilize in time (leading to pretty stationary values), this is by
no means something that is required by the model. The sys-
tem investigated in this paper is intentionally set up without
reaching any extremes, such as storms, droughts, etc. This
means that the bias corrections required by the filter are
kept on a rather constant level. If there would be more
extreme conditions included, such as a strong and more nat-
ural transpiration in the summer cycle, the stationary fea-
ture of the bias corrections may be replaced by for example
a yearly cycle, such as the leakage parameter in the ground-
water filtering problem of Hendricks Franssen et al.
[2011]. This, however, is for further research to investigate.

Appendix A: Reduced Ensemble Size

[72] The results shown in this paper are generated using
an ensemble size in the EnKF that is large enough to ensure
stable results (1000 members). When using a large ensem-
ble size, a resimulation of the same setup is expected to
generate the same result. When the ensemble size
decreases, the system becomes more sensitive to, for exam-
ple, initial sampling and the random noises added during
the simulation. For any practical purpose, the use of large

ensembles is often difficult and it might be necessary in a
specific application to use ensemble sizes as small as possi-
ble. To demonstrate the impact of the ensemble size on the
results shown and, further, to demonstrate how the EnKF
can be improved when small ensemble sizes are being
used, four test cases are here presented. The cases shown
are: the two two-layered models using a correctly and an
incorrectly placed interface as well as the one-layered
model using the bias correction (small ensemble versions
of cases 2, 3, and 4 in Table 2). All cases are assimilated
using an ensemble size of 20 members and the result is
showing the RMSE values for 100 repetitions of the exact
same problem using different random initializations, plot-
ted in order of increasing RMSE. As can be seen from Fig-
ure 12, when looking at the two-layered model with correct
interface, the result is very stable and very good (compara-
ble with the results in Table 3), while the two-layered
model with incorrect interface performs poor. The one-
layered models, on the other hand, may have good results,
but the RMSE curve is clearly increasing toward the right
end of the axis in Figure 12. This shows that if the model is
a very good approximation of reality, a small ensemble is
sufficient, whilst if the model gets more complicated (as
with the bias corrections that introduce more parameters), a
larger ensemble size is needed to provide a stable result.

[73] A step in the direction of lowering the ensemble
size is to aid the correlations in the EnKF. This could, for
example, be done by using localization covariance matri-
ces, which are applied to the computed covariances and
reduce the correlation where no correlation should be [see
e.g., Houtekamer and Mitchell, 1998; Chen and Oliver,
2009]. Since the focus of this work is the use of bias correc-
tions, we demonstrate here the use of a prescribed correla-
tion structure for the bias noise (w in equation (6)) in which
the strongly correlated noise used for the bias corrections is
divided into two separate layers, such that the correlation is
only present between points within the same layer. The cor-
relation layer interface is here placed at the position of the
true layer interface. As can be seen from Figure 12, both
bias correction models perform similarly if the simulation
is good (low RMSE values are comparable), but the two-
layered bias correlation structure model has clearly lower
errors over all of the repetitions than the one-layered bias
model, suggesting that the former has a more stable result.
This suggests that a better prior knowledge of the structure
of the bias can help to reduce the required ensemble size to
get reasonable predictions with the EnKF.
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