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Zusammenfassung

Ein dreidimensionales, numerisches Stréomungsmodell wurde mit einem Sedi-
menttransport und einem Modell zur Analyse der Bodenstabilitit gekoppelt. Das
Stromungsmodell ist in der Lage Berechnungen mit und ohne freier Oberfliche
durchzufithren, wodurch stationfire Stromungen wie auch propagierende Wellen
und die daraus resultierende Strémung im Nahbereich eines Bauwerks simuliert
werden kann. Das Modell basiert auf den Reynold’s gemittelten Navier-Stokes
Gleichungen, wobei die Schliefung des Gleichungssystems mit dem k-w(SST) Mo-
dell durchgefiihrt wurde.

Die vom Strémungsmodell berechneten Schubspannungen am Boden werden
an das Sedimenttransportmodell {ibergeben und mit diesen die Bodenevolutions-
gleichung gelost. Die Geometrie des sich verdndernden Bodens wird nach einer fest-
gelegten Dauer an das Stromungsmodell zuriickgegeben, worauf eine Aktualisie-
rung der Stromungsergebnisse durchgefiihrt wird. Da sich bei der Umstrémung von
Bauwerken lokal erhéhte Schubspannungen ergeben, fiihrt dies zu einem intensiven
Sedimenttransport und zur Bildung eines Kolkes. Die auftretenden steilen Boden-
gradienten werden in den Gleichungen zur Berechnung der Sedimentransportrate
durch zusitzliche Ansétze beriicksichtigt. Eventuell auftretende Sedimentrutsch-
ungen werden durch einen Algorithmus simuliert, der Sediment in Richtung des
Gefilles umlagert, falls der Neigungswinkel des Bodens den Reibungswinkel iiber-
steigt.

Das Sedimenttransportmodell wurde um ein Finite-Elemente Bodenmodell er-
weitert, das in der Lage ist, eine Stabilitdtsanalyse des Bodens bei Einwirkung des
Eigengewichts und duferer Lasten durchzufiihren. Dadurch konnen die Bereiche
bestimmt werden, an denen Sediment- bzw. Hangrutschungen auftreten. Hierbei
werden mehrere Bodenparameter in die Analyse sowie die Geometrie des Bodens
mit einbezogen.

Das beschriebene Modell wurde auf verschiedene Laborversuche mit stromungs-
und welleninduziertem Kolk angewendet. Neben einem Zylinder und einem senk-
rechten Wandeinbau in einer stationdren Stromung, wurden auch Versuche mit
kurzen Wellen (KC<6) sowie langen Wellen (KC>6) zur Validierung des Modells
herangezogen. Weiterhin wurde ein aus einem Wellenspektrum entstandener Kolk
im numerischen Modell nachgebildet.



Abstract

A three-dimensional flow model capable of simulation flows with or without
free surface was coupled with a model capable of simulating sediment transport
and bottom evolution, and a model for analysing soil stability. The flow model
presented is capable of simulating a steady flow or a propagating wave in order
to calculate the flow field in the proximity of a structure. The solver is based on
the Reynold’s averaged Navier-Stokes equations, whereas the closure of the set of
equations is achieved by means of the k-w(SST) turbulence model.

Using the shear stress at the bottom computed by the flow model, a sediment
transport rate may be calculated and subsequently inserted in the bottom evo-
lution equation. This leads to an intense sediment transport and thus to scour.
Steep slopes will lead to sliding sediment grains when the actual slope angle ex-
ceeds the friction angle of the sediment. In order to keep the bottom geometry in a
reasonable shape, an algorithm is used to simulate sliding sediments. Adjustments
for the inception of motion and the sediment transport rate at slopes improve the
original equations in such a way that sand sliding is less intensive with regard to
the number of iterations rquired, even though it is still necessary. The resulting
scour geometry is therefore also characterized by this algorithm, which depends
on one soil parameter.

A more general model for determining slope stability was developed and coupled
with the existing flow and sediment transport model. The bottom is idealised as a
three-dimensional solid body and a finite element analysis is carried out in order
to calculate the erosion zones under given conditions. When determining the slope
stability, this approach not only takes account of the friction angle but also several
other soil parameters as well as the bottom geometry.

The model described was used to simulate different laboratory experiments of
flow and wave induced scour. A vertical cylinder and an abutment in steady flow
conditions were considered as well as experiments with short waves (KC<6) and
long waves (KC>6) to validate the model. Furthermore, a scour resulting from a
wave spectrum was considered as test case for the numerical model.
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1 Introduction

1.1 Motivation

All structures situated in a maritime- or river-environment are exposed to the fluid
flow that surrounds them. The resulting forces acting on the structure and the
surrounding soil are a result of flow or wave action, or the combination of both.
Additional effects may include e.g. wave diffraction and reflection, wave breaking
or flow contraction. These effects may result in an increased flow velocity in the
vicinity of the structure and hence to higher shear stresses acting on the soil.
Assuming that the soil in most cases consists of sediments that are vulnerable to
erosion, an increase in the flow will result in increased sediment transport and
subsequent scour. As indicated by many examples in the past, this may pose a

serious threat to the stability of a structure.

In order to gain more knowledge concerning the scour process and the issue
of soil stability under the influence of flow, a combined numerical model of flow,
sediment transport and soil stability analysis has been developed. Whereas the
flow and soil model are three-dimensional, sediment transport and bed evolution
is simulated by means of two-dimensional model. The flow model is based on the
Reynold’s averaged Navier-Stokes equations with a scheme for calculating the free
surface. By this means it is possible to analyse a flow and a wave-induced scour.
Averaging the Navier-Stokes equations leads to the turbulence closure problem, i.e.
the need for additional equations in order to close the set of available equations.
This is achieved by using a modified version of the k-w turbulence model which
offers the advantage of simulating boundary-layer flows with a stagnation point

and adverse pressure gradients.

Taking the bottom shear stress computed by the flow model as input for the
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sediment transport model, a time variable bottom topography may be calculated
by means of the bottom evolution equation. The required transport rates are
obtained from (semi-)empirical equations based on laboratory experiments. The
considered material is sand and the main transport mode is bed-load. The trans-
port of suspended sediment is neglected in the presented numerical investigations.
Locally increased shear stress in the proximity of a structure leads to higher trans-
port rates and thus to more intense erosion. As a consequence, a scour with
steadily increasing slopes will develop. Once a slope has been established, the
sediment transport is not only driven by shear stress but also by the force of grav-
ity, which becomes more dominant with an increasing slope angle. Furthermore,
a collapsing slope with sliding sediment will occur when the slope angle attains
the sediment friction angle. As these sediment movements are only driven by the
force of gravity, they are not taken into account in the above-mentioned transport
rate equations but are treated separately using an algorithm which ensures that
the slope angle cannot exceed the friction angle. The sediment is otherwise shifted

in the direction of the slope until a stable condition is reached.

The slope stability is determined by comparing the actual slope angle with
the friction angle of the used material concerned. This is a valid assumption for
homogeneous, sandy materials which are preferred in laboratory experiments. The
properties and distribution of natural soil, however, are far more variable than can
be expressed by a single material parameter. For this reason a more general model
for determining slope stability was developed and coupled with the existing flow
and sediment transport model. The bottom is idealised as a three-dimensional
solid body and a finite element analysis is carried out in order to calculate the
erosion zones under given conditions. When determining the slope stability, this
approach not only takes account of the friction angle but also several other soil

parameters as well as the bottom geometry.

The model described was used to simulate different small and large scale cases
investigated in laboratory experiments. This covers experiments with a steady
flow as well as cases with waves. Most of the presented material is based on small

scale cases, as large scale scour experiments are rarely available.
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1.2 Literature review

1.2.1 Flow model

The vertical circular cylinder is one of the most widely used geometries for struc-
tures in the marine environment whereas river-based buildings are often designed
with an oval cross-section. Nevertheless the circular cylinder remains the com-
monly considered cross-section in theoretical and experimental studies. Flow
around structures is purely three-dimensional even in the case of a vertical cylinder
where the geometry is constant over the depth. The flow field exhibits different
effects depending on the type of flow approaching the structure. The effects that
may occur such as, e.g. a stagnation point, flow contraction and vortex shedding
are not only characteristic for a vertical pile but also for almost all other possible

objects.

Different approaches for modelling the flow around a circular cylinder may be
found in the literature. Reynold’s averaged Navier-Stokes equations (RANS) with
an adequate closure model and large eddy simulations are the most commonly
used. In the case of RANS, turbulence modelling may be performed using a two
equation model such as the k-¢ or the k-w model. Whereas Olsen and Melaaen
(1993) and Olsen and Kjellesvig (1998) applied the first method in order to calcu-
late the flow for a scour simulation, the latter method was applied in a modified
form (Menter, 1992) by Weilbeer (2001) and Roulund et al. (2005) for the same

purpose.

Although a large eddy simulation is certainly more accurate for calculating
flow than a RANS model, a considerably longer computation time is required.
This makes the method unsuitable for calculations involving longer periods than
are necessary for simulating the scour process or for calculations involving high
Reynold’s numbers. A subgrid scale model is necessary in order to model the
turbulence that is not resolved by the mesh. Several of these included in the
literature were studied by Breuer (2000) and Salvatici and Salvetti (2003). These
and among others Frohlich and Rodi (2004) and Frohlich et al. (2003), analysed
the influence of spatial discretization on the results. The advantages of using a

large eddy simulation were demonstrated by Catalano et al. (2003). By comparing



1 Introduction

the results of the latter with the results obtained from a calculation using a k-¢
model it was shown that the large eddy simulation clearly yields better results

regarding the pressure distribution and the separation points.

Yen et al. (2001) made use of the advantages of a large eddy simulation for
calculating a scour. The flow was only modelled once with a horizontal bed and the
velocities were then adapted to the changing bottom geometry without performing
an LES flow simulation for updating the flow. The Reynold’s number based on

the pile diameter was only 3900.

Although RANS have several disadvantages compared with large eddy simu-
lations, they were in fact succesfully used by Salaheldin et al. (2004) with a k-e
model. The resulting velocity profiles were found to be in good agreement with
the measured data while the shear stresses showed small deviations. Nagata et al.
(2002) used a nonlinear k-¢ model in order to calculate flow and scour around a
cylinder. This and the results of Weilbeer and Roulund et al. shows that RANS
may succesfully be applied to solve three-dimensional flow and scour problems,

which would otherwise be too time consuming using large eddy simulations.

1.2.2 Sediment transport

In a numerical model the sediment transport is usually subdivided into near-
bottom transport and the transport of material in suspension. They are included
in the general bottom evolution equation. Neglecting suspended sediment trans-
port on the grounds that sandy material (the only material considered in the
present, work) is predominantly transported at the bottom, the problem reduces
to finding an adequate description of the bed-load. This may be achieved using
one of the numerous equations available for this purpose. The problem may be
further simplified by assuming a uniform sediment, i.e. representation of the sedi-
ment particle diameters by a single mean diameter. This is a valid assumption as
the experiments presented here were carried out in laboratories under well defined
conditions with a given uniform sediment.

One of the first empirical expressions for the bed-load transport was obtained
by Meyer-Peter and Miiller (1948) from flume experiments with uniform grains as

well as with mixed grain sizes. The resulting formula is still used very frequently.
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Around the same time Kalinske (1947) and Einstein (1950) developed stochastic
approaches which take the nature of a turbulent flow into account when calculating
the transport rate. Both equations still require experimental data for calibrating
the various parameters (van Rijn, 1993). The formulas of Meyer-Peter and Miiller
and Einstein were used by Frijlink (1952) to develope an equation that is a fit of
the latter formulae and thus yields similar results. Other equations that should
be mentioned are the equations of Bagnold (1966), Engelund and Fredsge (1976)
and van Rijn (1984). The latter were implemented in the present work and are
presented in detail in Chapter 2.2.4. Several other more transport rate equations

suitable for simulating sediment transport are also available, e.g Engelund and
Hansen (1967), Zanke (1982a) and Cheng (2002).

Bed slopes are found to dramatically increase when scour occurs. As shown by
the measurements of Smart (1984), this has a significant influence on the direction
and magnitude of sediment transport. This effect may be taken into account
by modifying the transport rate originally calculated for a horizontal bed. The
transport rate in the longitudinal direction, i.e. the transport in the direction of
the shear stress, is first adapted and then an additional transport rate is calculated

in the transvere direction if a slope in this direction exists.

Changes in sediment transport rates along slopes were studied by Bagnold
(1966), who developed an expression for adapting the transport rate on a horizon-
tal bed for sloping bed conditions. Hardisty and Whitehouse (1988) found that
the resulting transport rate underestimates the actual transport rate obtained
from measurements. A similar approach was presented by van Rijn (1993), who
compared the equation of Smart (1984) with the original formula of Meyer-Peter
and Miiller and found an expression for a slope factor applicable to a downward
slope. Although the equation of Bagnold was developed for both an upward and
downward slope, Damgaard et al. (1997) found that upward slope transport is ad-
equately described by taking into account the changing threshold value in upward
direction. Other approaches which take account of changing sediment transport
rates are given by Koch and Flokstra (1981) and Kovacs and Parker (1994).

In the case that sediment transport occurs in the direction of the shear stress, a
slope in the transverse direction causes additional gravity-induced transport in the

direction of the transverse slope. This means that the resulting transport vector is
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no longer in the direction of the shear stress but slightly inclined in the direction
of the slope. This behaviour was studied by Engelund (1974), Tkeda (1982, 1988)
and Talmon et al. (1995). Ikeda developed a formula for calculating the sediment
transport rate as a function of the longitudinal transport rate and the transverse
slope. Talmon and Wiesemann (2006) found that the transverse transport rate is

dependent on the grain size and presented a formula taking this into account.

Sediment particles resting on a slope are subjected to the acting shear stress as
well as the force of gravity. The component of the gravity vector in the direction of
the slope causes an increase in the critical Shields parameter when the shear stress
acts in the upward direction and a decrease in the opposite case. A coefficient
for the Shields parameter which takes account of the latter was first presented by
Schoklitsch (1914). Similar expressions have also been derived by Whitehouse and
Hardisty (1988), Lau and Engel (1999), Luque and Beek (1976), Hasbo (1995) and
Chiew and Parker (1994).

1.2.3 Slope stability

The slopes that occur when a scour developes are subjected to shear stress, flow-
induced pressure and gravity. Sediment grains begin to slide when the slopes
become too steep, thus resulting in a loss of stability. In the presented numerical
model this is taken into account by shifting sediment from higher to lower points
in the computational mesh. The threshold of sediment sliding is identified by
comparing the actual slope angle with the friction angle of the material. The
only soil parameter used in this context is hence the friction angle, whereas slope

stability is governed by additional parameters including the overall slope geometry.

Slope stability may be determined in a number of ways which are more or
less accurate depending on the method used. Duncan (1996) has summarized the
established methods, which include the ordinary method of slices (Fellenius, 1936),
the modified method of Bishop (1955), Spencer’s method (1967) and several other
methods based on the assumption that it is appropriate to divide the soil mass
into slices. Because these methods require an approach for estimating the side
forces acting on each slice, the entire solution process combined with all other

simplifying assumptions leads to uncertain results. The methods mentioned are
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nevertheless widely used in geotechnical engineering partly because of their ease
of application and also due to the fact that the method of Bishop, for example,
became a ’standard’ for slope stability analysis (Griffiths and Marquez, 2007).
Examples demonstrating the implementation of these methods may be found in
Verruijt (1995).

In order to determine slope stability more accurately under scour conditions a
finite element model for the soil was implemented in the present investigations.
In contrast to the majority of numerical simulations carried out in geotechnical
engineering, the analysis in the present case is three-dimensional rather than two-
dimensional. The advantages of using a numerical model rather than one of the
different methods of slices are e.g that the progression of failure can be monitored
up to the point of total failure and that no assumptions are necessary concerning
the shape or location of the failure surface. The point of total failure, as given
by the results of the calculation, occurs when the soils shear strength is no longer
able to sustain the acting force of gravity (Griffiths and Lane, 1999). An ad-
ditional advantage of a three-dimensional model is the ability to more precisely
define the slope geometry. This is especially important in the case of a scour hole
whose slope is normally characterized by a round shape. In contrast to a two-
dimensional model, a three-dimensional approach permits the modelling of a true
three-dimensional shape rather than a two-dimensional geometry extended to the

third dimension.

The force of gravity acting on a slope causes stresses in the soil which in turn
lead to strains. Smaller strains are usually reversible and can therefore be de-
scribed by the theory of linear elasticity (Verruijt, 1995; Davis and Selvadurai,
1996; Zienkiewicz and Taylor, 2000). When a slope is close to failure, however,
plastic deformations occur in the soil as a result of irreversible strains. The adop-
tion of an elastoplastic or viscoplastic approach for describing the stress-strain re-
lationship offers a means of modelling soil behaviour more precisely (Zienkiewicz
and Taylor, 2000; Davis and Selvadurai, 2002; Griffiths and Marquez, 2007). This
is important in the presented cases where high stress levels occur and the slope
is not only close to failure but also partially collapses (thereby leading to sliding
sediment grains). Early examples of the application of these techniques are given
by Smith and Hobbs (1974) and Zienkiewicz et al. (1975). In these examples the
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results were compared with the data of Taylor (1937) and with solutions obtained

from the slip circle theory.

A distinction between linear and nonlinear deformations is possible using the
Mohr-Coulomb criterion, which is suitable for soils possessing frictional and co-
hesive components (Smith and Griffiths, 1998). If the stress at a point in the
computational mesh due to the acting force of gravity lies within the range of
the failure criterion then it is assumed that only linear deformations occur. If
the stress lies outside of the failure criterion, on the other hand, the deformation
is irreversible and yield has occurred. The stress in the yielding region is then
redistributed among the neighbouring elements in the mesh by a viscoplastic al-
gorithm described by Perzyna (1966); Zienkiewicz and Cormeau (1974). Owing
to the fact that the redistribution of stresses can cause yield in regions which were
originally elastic, the stress redistribution process is carried out iteratively. The
process ends when a stable condition is reached and no more plastic deformations

occur.

The described algorithm was first implemented in a finite element model pub-
lished by Smith and Griffiths (1988). The use of a finite element model for calcu-
lating slope stability is reported among others by Matsui and San (1992); Jeremic
(2000); Sainak (2004); Griffiths and Marquez (2007).

1.2.4 Scour experiments

The process of scouring around structures is a widely studied effect. Many lab-
oratory experiments have been carried out in the past to investigate scour phe-
nomena. Physical modelling has mainly been carried out in flumes with either
a steady current, waves or in rare cases a combination of both. Previous in-
vestigations have especially focused on scour around a pile in a steady current,
as this type of scour has led to several severe failures of river bridge piers in the
past. This phenomenon has been studied among others by Hjorth (1975); Melville
(1975); Breusers et al. (1977); Ettema (1980); Zanke (1982b); Raudkivi and Et-
tema (1983); Chiew and Melville (1987); Melville and Sutherland (1988); Melville
and Chiew (1999); Oliveto and Hager (2002); Link and Zanke (2004); Roulund
et al. (2005).
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A central question in most studies concerns the equilibrium scour depth, which
is an important factor governing structural stability. Other topics of investigation
include timescale, the shape of the scour hole or the influence of sediment compo-
sition. Early examples of the three-dimensional numerical modelling of current-
induced scour are given by Olsen and Melaaen (1993) and Olsen and Kjellesvig
(1998). Whereas the results in the former case were calculated using a steady-
state solution of the flow, the latter case involved the modelling of unsteady flow
with additional consideration of varying sediment transport rates along slopes.
Measurements of current-induced scour together with the results of a numerical
simulation have been presented by Roulund (2000). Besides introducing the con-
cept of sliding sediment grains in numerical models, Roulund also took account of
the changes in the critical shear stress along slopes. Weilbeer (2001) considered
the same effects as Roulund and compared his results with Roulund’s measure-
ments. A later study based on the same measurements was published by Roulund
et al. in 2005.

With the growth of offshore technology, questions arise concerning scour caused
by tides and waves. Investigations are normally carried out with regular or irreg-
ular waves based on a particular wave spectrum (e.g. the Jonswap or the Pierson-
Moskowitz spectrum). The wave-induced scour around a slender pile was investi-
gated by Sumer et al. (1992, 1993, 2007). In this flow regime a horseshoe vortex
and vortex shedding is present which leads to intense sediment transport in the
proximity of the structure. It was shown by Sumer et al. (1992) and Kobayashi
and Oda (1994) that the flow regime around a cylinder may be described by
the Keulegan-Carpenter (KC) number. Slender piles lead to larger KC numbers

(KC > 6) indicating the formation of a horseshoe vortex.

In contrast to the case of a slender pile, the flow regime around a large pile lacks
a horseshoe vortex, vortex shedding and flow separation. Instead, diffraction of
the wave occurs (Sumer and Fredsge, 2002) and scour is caused by wave-induced
velocities at the bed. This process was studied by Toue et al. (1992); Katsui and
Toue (1993) and Sumer and Fredsge (2001a). Zhao et al. (2002) and Zhao and
Teng (2004) presented the results of a simulated scour in which the shear velocites
were calculated by a wave model based on the Boussinesq equations and the mild-

slope equations (Berkhoff, 1972), respectively. The influence of the slope on the
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sediment transport rate was not taken into account.

A wave with an underlying current leads to a scour hole similar to that produced
by a steady current. This effect was studied by Eadie and Herbich (1986); Sumer
and Fredsge (2001b); Zhao et al. (2004); Rudolph and Bos (2006). If the flow is
strong enough and the wave propagates in the same direction as the current, the
horseshoe vortex is permanently present and becomes weaker and stronger in an
alternating manner in accordance with the propagating waves. With increasing
flow velocity the shape and depth of the scour hole converges to that of a scour
hole produced by a current without wave action. The results of a two-dimensional
numerical flow model with a combined wave model based on the mild-slope equa-

tions was presented by Zhao et al. (2004).

1.3 Outline of the present investigations

Following the foregoing literature review covering the various topics of this thesis,
a brief outline of the present investigation is now given. The investigation focuses
on the modelling of sediment transport and soil stability related processes. The
input to the sediment transport model is calculated by a flow model described in
Chapter 2.1. A brief explanation of the governing equations, pressure treatment,
and free surface and turbulence modelling is presented. The boundary conditions
for the case of a superimposed wave are given in Appendix A. First order Airy

theory and the stream function theory for higher order waves are presented.

A description of near-bed sediment transport is given in Chapter 2.2. In this
chapter the governing equations, transport rate equations, transport rate adjust-
ments and the changing critical mobility parameter on slopes are presented. The
inclusion and treatment of gravity-induced slidings of sediment grains in a nume-

rical model are also explained.

The mathematical theory underlying the implemented soil model is described in
Chapter 2.3. This chapter deals with the topic of linear and nonlinear deformations
calculated by a three-dimensional numerical model. Boundary conditions and

solution strategies are also taken into consideration.

Following a presentation of the different parts of the numerical model, Chapter

10



1.3 Outline of the present investigations

2.4 deals with the coupling and interaction of these models. The results of different
numerical experiments to investigate flow and wave induced scour as well as scour
hole stability analyses are subsequently presented in Chapter 3.

A conclusion of the presented results together with a closer examination of the
perspectives of numerical models in scour and soil modelling are given in the

closing chapter of this thesis.
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2 Physical processes and model

coupling

2.1 Flow model

The flow field in the proximity of structures is always complex. Because the flow
field is predominantly three-dimensional, a three-dimensional model is necessary to
correctly simulate flow behaviour. The governing equations of a three-dimensional
(Reynold’s averaged) Navier-Stokes equation solver are well known and may be
found in numerous publications, e.g. Ziegler (1995); White (2003); Kundu and
Cohen (2004). The following chapters present a summary of the equations used
and the methods by which they are solved. Flow and sediment transport (see
Chapter 2.2) model are based on the Telemac modelling system developed by the
Laboratoire National d’Hydraulique (LNHE) of the Electricité de France (EDF).

The flow is solved on a three-dimensional mesh consisting of wedge elements.
The advection in all simulations with flow only is computed using the method of
characteristics or the streamline-upwind /Petrov-Galerkin (SU/PG) method. Both
methods are of first order. While the method of characteristics is more stable and
less time-consuming than the SU/PG, it is known to generate more numerical dif-
fusion which has a smoothing effect on the solution. Other methods include the
MURD (multidimensional upwind residual distribution) scheme, which is used in
all nonlinear wave simulations, and the N and the PSI schemes. More detailed
information on how these schemes handle advection may be found in Hervouet
(2007). The non-hydrostatic algorithm used in the present study, which was origi-
nally developed by Jankowski (1999), is also presented in Hervouet (2007) together

with information on the finite element method which is used to calculate the dif-
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2 Physical processes and model coupling

fusion step. The handling of the free surface, as based on Hervouet and Pham
(2007), is described in Chapter 2.1.4.

2.1.1 Governing equations

The mathematical description of flows is part of the theory of continuum mechan-
ics. This consists of the equations for the conservation of mass and conservation
of momentum (Eq. 2.1 and 2.2), i.e. the so-called Navier-Stokes equations. These
describe the distribution of velocity and pressure in time and space, and are com-
prised of a system of nonlinear partial differential equations of second order. A

basic assumption in the following equations is that the fluid is incompressible.

Vi =0 (2.1)

% + i Vi = —%Vp—i— AV (2.2)
In order to solve the Navier-Stokes equations by numerical methods it is first
necessary to simplify them. This is achieved by averaging the velocity and the
pressure fields. The resulting equations are referred to as Reynold’s averaged
Navier-Stokes equations (RANS). Firstly, the velocity and the pressure are split

into an averaged part and corresponding fluctuations:

u; = U; + u;
(2.3)
p=p+p

Inserting Eq. 2.3 into Eq. 2.2 leads to an expression (Eq. 2.4), in which the un-
known variables are averaged and where the solution is an approximation of the

Navier-Stokes equations.

ow  wwm 0 [ ow | 0w\ _——|  +
ot Ox; O { p(;”JFM(@:CJ +8xi) ]+ 24

The left-hand side of Eq. 2.4 represents the change of mean momentum due to

the unsteadiness of the flow and the convection term. This is balanced by the
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2.1 Flow model

stress resulting from the pressure field, the viscous stress term, the apparent stress

(—ugu;) (also known as the Reynold’s stress) and the acting body forces.

The Reynold’s stress tensor may be approximated by means of the Boussinesq
approach (Eq. 2.5). By inserting Eq. 2.5 in Eq. 2.4, an additional equation must
be solved in order to obtain the turbulent viscosity v;. This is achieved with the

aid of a suitable turbulence model (see Chapter 2.1.5).

Ei Ej 2 8uk 2
= — — 2285 ) + Sk, 2.5
Vi (8$‘] + 8902 38$‘k ]> + 3 ( )

!,,!

2.1.2 Operator splitting

The method of operator splitting is used to split the Navier-Stokes equations
into several parts based on the properties of the differential operators. Each part
may then be treated in a single step by applying a suitable solution algorithm.
All fractional steps together lead to the solution of the equation on the new time
level. The splitting of an arbitrary variable is carried out according to the following

equation:
g:fn+1_fd+fd_fa+f_fn
ot At At At

The first fractional step is the advection step, whereby the variable f” is treated

Q

(2.6)

using one of the schemes mentioned in the introduction. This results in an interim
solution f“. The subsequent diffusion step, as computed by the finite element
method, results in f¢. Applying the continuity equation, a preliminary solution
for the variable f*™! may be found. In the solution of the Navier-Stokes equations
the variable f is a velocity u,v, or w or a tracer that is transported with the flow.

Considering the velocity, Eq. 2.6 takes the form

o atl -l - e —an

- A T A T A (2.7)
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2 Physical processes and model coupling

The hydrostatic pressure component is first taken into account. Splitting into

fractional steps, the advection step is described by:

ut —u"

At

Vil =0 (2.8)

Equation 2.8, which is hyperbolic in nature, may be solved by the method of
characteristics or the Streamwise-Upwind /Petrov-Galerkin method (SU/PG). Al-
though the latter is less diffusive, it is far more time-consuming in computational
terms. Using the SU/PG method, advection and diffusion are solved in a single

step. Otherwise the diffusion step is computed by means of Eq. 2.9.
wd — a°

=V (Vi) + F, (2.9)

The vector F, includes source terms from free surface gradients and density gra-
dients as well as miscellaneous sources. The solution of this equation may be
obtained by the finite element method. The result obtained from the advection
and diffusion step is an interim solution of the velocity field #. In order to get
the final velocity field the dynamic pressure must be calculated by means of the

Poisson pressure equation (see Chapter 2.1.3).

2.1.3 Treatment of pressure

The frequently adopted assumption of a hydrostatic pressure distribution is no
longer valid when dealing with waves or flow around structures. The acceleration
of fluid particles in such cases results in a dynamic pressure component which must
also be taken into account. This is achieved by splitting the overall pressure into
a hydrostatic (py) and a dynamic (pp) component (Jankowski, 1999; Hervouet,
2007):

P = PH +PD (2.10)

The hydrostatic component py may be calculated by integrating over the water
depth:

S
pu = /pgdz (2.11)
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2.1 Flow model

By splitting the pressure into a hydrostatic and a dynamic component, the form

of the momentum equation (Eq. 2.2) changes as follows:

- _
ou s o | [Ap 1 9pp
. = —g— — g— — - = . 2.12
5 +u-Vu 99~ 9on //)0 dz o o + V- (UVu) (2.12)
0 oS 0 | SA | 10
LA 3 VA /—dz — PV 5V 2.13
ot Yoy ~ oy Po po Oy Vo) (213)
ow Opp .
- . === . 2.14
o iV - +V - (FVw) (2.14)

Horizontal gradients of the free surface as well as pressure gradients appear in the
above momentum equations (Eq. 2.12-2.14). In the vertical direction, only the
hydrodynamic pressure gradient is retained. The hydrodynamic pressure compo-
nent may be calculated by means of the Poisson pressure equation, which may
be developed from the Navier-Stokes equations. The time derivative of velocities
may be treated using the method of operator-splitting (see Chapter 2.1.2), which
results in: et d G

o A TN (2.15)

In Eq. 2.15 @ is an interim solution of the velocity field, which is not rquired to

fulfil the condition of incompressibility. Eqs. (2.12-2.14) may be converted into
two sets of equations, one of which includes the pressure gradients and the other

of which is free of pressure terms:

- g -
uw—u" B oS 0 Ap .
oS 0 [ A ]
. =—qg— —g— — . 2.1
A7 +u- Vv g@y g@y //)0 dz| +V - (7Vv) (2.17)
w—w" p .
. =_ . 2.1
A7 +u - Vw pog—i-V (PVw) (2.18)
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2 Physical processes and model coupling

ntl 5

% = —inD (2.19)
Taking account of the fact that the resulting velocity field must fulfil the incom-
pressibility condition (V - 4" = 0), the following form of the Poisson pressure
equation is obtained:

2 Po =,
—_Ny. 9.9
Vipp = 1V i (2.20)

The divergence-free velocity field for the next time step is obtained from Eq. 2.19
and the solution of Eq. 2.20.

2.1.4 Free Surface

The requirements placed on the quality of the free surface model increase notice-
ably when dealing with waves. Past simulations of streaming induced scour were
carried out by calculating the free surface in an incremental step based on the
solution of the two-dimensional (depth-averaged) continuity equation. The final
velocity field was then computed in a second step after performing a velocity pro-
jection (see Jankowski (1999); Weilbeer (2001)). Simulations with nonlinear waves
indicated the need for very small time steps. Using this type of scheme, it was
also found that excessive wave damping occurred. This procedure was adapted
and significantly improved by Hervouet and Pham (2007). All simulations dealing
with waves in the present work implement a scheme for the free surface which
solves the three-dimensional continuity equation and avoids the assumption of a
hydrostatic pressure distribution. Instead, the dynamic pressure is calculated at
the (former) hydrostatic step and is taken into account when solving the continu-
ity equation. As a result, the waves show no damping when propagating through

the computational domain.

The entire calculation is performed in a semi-implicit manner, whereby the
velocity is calculated by Eq. 2.21, with 6 as the implicitness factor (ranging from
0to1):

77 Tin+1 Tin
U=0,U""+(1-6)U (2.21)

Inserting Eq. 2.21 into the continuity equation and neglecting source terms leads
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2.1 Flow model

tO htt — e —7n+l —=n

T+Vh(0uu +(1-0)u") =0 (2.22)
While the above equation appears to be quite trivial, the problem of solving this
equation is connected with the fractional step method. The final velocity field
(and the final dynamic pressure, which is included in w™*') is not known at this
point in time. This means that an interim solution suitable for calculating the
free surface is required. The variable @"*! is calculated by averaging U over the
depth.

Assuming that an advection step based on the method of characteristics or
an alternative explicit method has already been performed, the velocity U¢ is
known. Eq. 2.23 is derived from the momentum equation and provides a means
of calculating the interim solution for the velocity U. In a hydrostatic solution
U would be equal to U™, So far Eq. 2.23 has been used in this hydrostatic
step. This includes the velocity after the advection step as well as the gradients of
the free surface and the turbulent diffusion. The dynamic pressure is taken into
account in a later fractional step. In order to overcome the modelling problems
when simulating nonlinear waves, it is necessary to implement the full momentum

equation, which includes the dynamic pressure (Eq. 2.24).

—

= B —)C = N

% = —slu U — g grad(Z;) + div (v g'r’ad(ﬁ)) (2.23)
_(j —U° = — l— -
A —slu U — g grad(Zs) — ;gmd (pa) + div (v grad(U))  (2.24)

The projection step for computing the velocity is carried out as the last fractional
step and has a different meaning when treating the (fomer) hydrostatic step in
the above-mentioned manner. The calculated pressure then only represents an
increment which is added to obtain the final velocity. The vertical velocity, which
has not been considered so far, must also to be taken into account in order to
maintain consistency of the algorithm. The corresponding modification is given

by Eq. 2.25.
ﬁa(pd)

’W’n+1 —wb_
p 0z

(2.25)

19



2 Physical processes and model coupling

When considering the divergence of the momentum equation and splitting this into
a hydrostatic step, which includes advection, diffusion, the effect of the hydrostatic
pressure and the source terms, and a step for calculating the dynamic pressure,
the resulting equation is Eq. 2.26. U is again the interim solution for the velocity
following the above-mentioned steps. A knowledge of the dynamic pressure at this
fractional step leads to an improved solution of the continuity equation, especially
when simulating a propagating nonlinear wave.

div (Lgradpa) ) + —Ldiv (T - T") =0 (2.26)
v pgra Dd x4 = _

2.1.5 Turbulence modelling

The k-w model differs from the well-known and widely used k-¢ model particularly
in two particular aspects. Firstly, it is possible to integrate through the viscous
boundary layer. This means that values for k and w may be imposed directly at the
boundary. Secondly, the model produces better results when dealing with adverse
pressure gradients, as shown by Menter (1992) and Wilcox (1993).  Weilbeer
(2001), for example, testet different variants of the k-w model for modelling flow
around a cylinder. The standard version was first testet, followed by the so-called
BSL and SSL variants. The latter variant is able to eliminate the high sensitivity
of the model in the upstream region of the cylinder, as caused by the presence of

a stagnation point.

The original k-w model consists of two transport equations. The first of these

is for the turbulent kinetic energy k:

ok avk-v. (wi) Vk+ P — fkw (2.27)
ot Ok

and the second for the dissipation rate w:

8—w+ﬁVw:V- (V‘Fi) Vw+ «
ot O

w

kP — fw? (2.28)
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2.1 Flow model

The appropriate production term P may be written as:

P =y (axj + 8@) o (2.29)

It is finally possible to calculate the eddy viscosity, which may then be inserted
into the RANS momentum equation:

k (2.30)

Vy =

Five empirical constants are required in the standard formulation of the k-w model
(Table 2.1).

« ﬁ* ﬁ Ok Ou
5 9 3
9 100 40 2 2

Table 2.1: Default values of the empirical k-w constants

Menter (1992) developed two variants of the k-w model in order to resolve the
weaknesses of the standard version, namely the BSL (Baseline) and the SST (Shear
Stress Transport) variants. The BSL model combines the positive behaviour of
the k-w model of Wilcox in the near wall region with the k-, which yields good
results in the region outside of the boundary layer. The BSL variant of Menter
was further enhanced by Wilcox, who developed the following transport equation
for w:

w

P— B+ ZVkvw (2.31)
k w

aa—j+ﬁVw:V~ (U—Fi) Vw + «

Ow

with
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2 Physical processes and model coupling

0, VEVw<0
o4 = (2.32)
o, VkVw>0

In addition to the assumptions made in the BSL model, the SST variant of the
k-w model takes into account the fact that for flows with a boundary layer the

stress (Bradshaw et al., 1967) cannot exceed
7 = 0.3pk (2.33)

The turbulent viscosity is defined by

0.3k
= 2.34
vt mazx(0.3w; QF) (2:34)
in which the vorticity is calculated using Eq. 2.35.
ow Ov ou  Ow v Ou
Q=|——=— —— —— 2.35
i Jdy 0z i 0z Oz oxr 0Oy (2:35)

The blending function F' (Eq. 2.36) is then applied in order to make use of the
original formulation in regions outside of the boundary layer. In Eq. 2.36 z denotes

the distance from the boundary.

(2.36)

2
F =tanh | |maz | 2 vk ;5001/
0.09wz" 22w

2.1.6 Bottom shear stress

Experiments were carried out by Nikuradse (1933) on pipes with sand along the
pipe walls. The grain size s varied from s/R = 1/15 to s/R = 1/500, whereby R
denotes the pipe radius. The effective grain roughness coefficient that resulting
from these experiments is referred to as k,. This parameter describes the influence
of roughness on the flow in the vicinity of a boundary. It is assumed that the total
roughness k; is the sum of the grain roughness k; ; and a form roughness k; ¢, due

to bed forms such as ripples and dunes. In the scour experiments carried out in
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2.1 Flow model

the present work the form roughness is neglected and therefore &, ; = 0.
ks = ks g+ ks ¢ (2.37)

Based on the mean particle size, the grain roughness may be approximated as
follows:
ksg=3dn (2.38)

In the case of rough channels the viscous layer at the boundary is followed by a
region with a logarithmic velocity distribution. The logarithmic law describing

this distribution may be expressed as

u 1 Yo
—=—In|{—|+B 2.39
U K (k:s) (2:39)
Here, u/u, is the ratio of the flow velocity to the shear velocity and « is the von
Karman constant, which is equal to 0.41. The distance from the boundary is
denoted by 1y and k; is the boundary roughness mentioned above. The constant
B is a function of the non-dimensional roughness parameter k = u.k,/v. For a

turbulent flow in a completely rough regime Nikuradse found that B = 8.5. This

reduces Eq. 2.39 to
1 30
Y Im ( kyo) (2.40)

Us K

In order to calculate the sediment transport rate, the shear stress at the bottom
is also required. Using the shear velocity from Eq. 2.40 and inserting this into Eq.
2.41 leads to the shear stress that is used in the sediment transport model.

we =, |2 (2.41)

p
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2 Physical processes and model coupling

2.2 Sediment transport and bottom evolution

When a fluid flows over a movable bed consisting of sediment particles, a shear
force develops and acts on the single grains. The shear forces are caused by the
coarseness of the bed, which gives rise to pressure fluctuations, and also due to
the fact that fluids tend to adhere to solid walls (Zanke, 1982a). In the case that
the shear forces are large enough to set the grains in motion, sediment transport
takes place. Lighter sediments go into suspension and are carried away by the
flow. Heavier sediments are transported as bed-load near the bottom surface
in the direction of the shear stress. As will be demonstrated in Chapter 2.2.5,
this behaviour is also influenced by the bottom slope. In the present model the
suspended sediment transport is neglected, as only coarser material is used in the

numerical experiments which tends to be transported as bed-load.

2.2.1 Material properties

Sediments in a natural environment consist of particles or grains which primarily
result from the disintegration of rocks. Grain sizes range from large fragments
to small, colloidal particles. The shape of grains is formed by the natural envi-
ronment, which leads to rounded as well as angular grains. The density of grains
varies according to the composition of the constituent materials. The predominant
materials present in sediment grains are quartz and clay. While quartz is non-
cohesive, clay is generally cohesive due to the fact that it consists of flat plates with
a diameter of less than about 0.06mm. This means that clay tends to flocculate.
The size of sandy particles, as used in the present experiments, lies in the range of
0.06mm to 2mm. The density of the above-mentioned materials is approximately
ps = 2650 kg/m3. The specific gravity is given by the ratio of the fluid density to
the sediment density: s = ps/p. An additional property relevant to the present
study is the angle of repose, which is a limiting parameter with regard to slope

angles.
The sediment properties considered here are:

e density

e shape
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2.2 Sediment transport and bottom evolution

e size

e angle of repose

Neglecting suspended sediment transport in the present investigation (see Chapter
2.2.2), a knowledge of the fall velocity is not required. This also applies to the
porosity, which is only required when considering the packing of sediments and
consolidation history. A single dimensionless parameter D, (Eq. 2.43) is used
here to describe sediment particles and their properties. This parameter reflects
the influence of the gravity ¢, the particle density p and the fluid viscosity v.
Sediments in a natural environment consist of a range of particle sizes. Here dxq is
used, which is the median particle diameter of the bed material, i.e. the particle
size below which 50% by weight is finer. Another characterisation often used is

the mean particle size, which is defined as

whereby p; is the percentage by weight of each grain.

D, = (Mi)% dso (2.43)

p v

2.2.2 Bottom evolution

The result of a flow simulation provides a knowledge of the magnitude and the
direction of the shear stress acting on the sediment particles (7). This information
may be used to determine the transport capacity (see Chapter 2.2.4) and the
direction of the sediment flux ¢;. The sediment flux and the shear stress are
related by Eq. 2.44. This vector does not include the force of gravity acting
on the sediment particles. The influence of slopes and therefore gravity will be
discussed in Chapter 2.2.5.1. The sediment flux alone offers no information on
how the bed will change in height. Inserting the result of Eq. 2.44 in the bottom
evolution equation (Eq. 2.45) leads to the change of bed height with time, i.e. the
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bottom evolution.

ds = 4s77= 2.44
ol (244

823 R 8QS1 aqsy

=2 _— _q = — 2.4

ot s ( or oy (2.45)

2.2.3 Inception of sediment motion

Sediment transport takes place when the acting shear stress exceeds a critical
value. A large number of experimental studies dealing with this topic have been
carried out by various investigators, e.g. Shields (1936); Graf (1971); Raudkivi
(1976); Yalin and da Silva (2001). In most studies the critical value for incipient
motion of sediment is related to the critical bed shear stress 7,... In a non-
dimensional expression this is referred to as the critical Shields parameter 6.,
(Eq. 2.47), as shown in Fig. 2.1. Although this is still the most widely adopted
criterion for defining the inception of sediment motion, a number of inconsistencies
and misconceptions (Buffington, 1999) and discrepancies exist in the experiments
(Shvidchenko and Pender, 2000).

The critical Shields parameter may be calculated by parametrizing the Shields
curve (Eq. 2.46), as carried out by van Rijn (1993). the shear stress and mobility
parameters are related by Eq. 2.47. While Shields relates the critical shear stress to
a Reynold’s number which includes the actual shear stress acting on the particles,
van Rijn uses the dimensionless particle diameter D,, which includes the material

density in order to calculate the critical value. Both methods lead to similar

results.
0. = 0.24 D] for 1 <D,< 4
0,= 014D7%  for 4 < D,< 10
0,= 004D %"  for 10 <D, < 20 (2.46)
0, = 0.013D%  for 20 < D, < 150
O = 0.055 for D, > 150
h=— " >y (2.47)

(ps —p)gd =
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Figure 2.1: Inception of sediment motion (Shields, 1936)
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Figure 2.2: Parametrization of the Shields curve
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2.2.4 Transport rate
2.2.4.1 Van Rijn

Eq. 2.49 developed by van Rijn (1984) is based on laboratory experiments. The
grain diameters considered in the experiments were in the range of 200um <
dso < 2000um. The water depth was greater than 0.1m in all experiments and

the Froude number was less than 0.9.

Van Rijn assumes in his approach that particle movement is dominated by
jumps and saltation. The bed height may then be approximated by the following

equation:

5 - cr
D 03D T with T =t Ther (2.48)
d Tbv,cr

g0 = ay | 2L gdz, DO (2.49)
p

An equation for the particle velocity was also developed from experiments and
has the following form:
Up

— T —15T° with s="25 (2.50)
[(s = 1) g dI” p

Using the equation for the sediment concentration

Cp T
— =0.18
Co D,

(2.51)

and inserting it into qs = dpupcy results in Eq. 2.49, which may be used to
determine the transport capacity under the given conditions.For a value of T > 3
the equation was found to overestimate the transport capacity and was hence

modified in order to fit the results of the laboratory experiments:

qs = 0.053 (S o 1)0.5 g0.5 déofi D;0'3 T2.1
(2.52)
gs =01 (s —1)"° ¢*° di> D,°? T'* for T >3
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2.2 Sediment transport and bottom evolution

2.2.4.2 Meyer-Peter and Miiller

An alternative approach for calculating the bed-load transport capacity is by
means of Eq. 2.53, as developed by Meyer-Peter and Miiller (1948, 1949). Nu-
merous experiments were carried out in a flume with a length of 50m and a cross-
section of 2 x 2m?. The water depth was 0.1 to 1.2m. The resulting equation
is only valid for particle sizes greater than 0.4mm and less than 29mm, which
approximately corresponds to the diameter range of coarse sand. This equation
is therefore more applicable in a river than in a coastal environment. In the
present work the equation was used e.g. for calculating the transport capacity in

a simulated laboratory experiment with an artificial sediment (see Chapter 3.1.1).

(2.53)

In Eq. 2.53, 0 is again the mobility parameter (Eq. 2.47) and p is the bed-form
factor, which may be calculated using the overall Chézy coefficient (Eq. 2.55) and
the grain-related Chézy coefficient (Eq. 2.56).

C
C =18 In(12h/k,) (2.55)

Meyer-Peter and Miiller used the mean diameter d,, in their work. This is about
1.1 to 1.3 times greater than the d5y parameter for almost uniform material. By
way of an example Van Rijn (1993) demonstrated that the influence of the parti-
cle diameter on the resulting sediment transport capacity is only very small and

therefore the median particle diameter dsy may also be used.

29
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2.2.4.3 Engelund and Fredsge

The transport rate equation developed by Engelund and Fredsge (1976) describes
the transport rate as a product of the particle volume, the particle velocity u; and
the probability of occurrence of moving particles per particle area. This equation

reads as follows:

T3P

The required particle velocity may be calculated using a semi-empirical equation

qs =

(Eq. 2.58), where u, is the shear velocity and « is a parameter in the range of 6

to 10. In the experiments presented at a later stage a value of v = 10 is used.

i, = o, <1 0.7y /%) (2.58)

The probability of occurrence of moving particles is calculated using Eq. 2.59,
where py4 is the dynamic friction coefficient. For the materials considered in the

present, study a value puy = 0.51 was adopted.

1

T 4 "

6 Md 4
1 6 2.59
- (e—ecr) ] (2:59)

2.2.4.4 Cheng

Most, transport rate equations are of an empirical nature and were developed
with the aid of laboratory measurements. As these measuerements were made
under different conditions, e.g. for low, moderate or high shear stress, the derived
equations are only valid for the particular conditions corresponding to each set of
measurements. The sediment transport formula of Cheng (2002) was derived to
fit measurements and transport formulae for low, moderate and high shear stress
conditions. The concept of critical shear stress was not taken into account owing
to its limitations when dealing with low shear stress and hence weak sediment
transport. Experiments such as those of Paintal (1971) show that there is no

shear stress below which absolutely no grains move. Although the transport rate
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2.2 Sediment transport and bottom evolution

becomes very small for very low shear stress values, it never equals zero.

The non-dimensional transport rate equation of Cheng is derived from the re-

lationship ® ~ 0™ and takes the form

.05
d = 136" exp (—(;TOE)) (2.60)

whereby the transport rate g, may be written as

qgs = Pd\/(s—1)gd (2.61)

Eq. 2.60 fits the measurements of Meyer-Peter and Miiller (1948), Einstein
(1950), Bagnold (1973) and Yalin (1977) well for moderate and high shear stress.
A comparison of Eq. 2.60 with the formulae of Paintal (1971) and Einstein (1942)
shows that it is also able to correctly reproduce transport rates under low shear

stress conditions.

2.2.5 Influence of bottom slope

The bottom slope is the inclination of the bottom surface measured from a hori-
zontal plane. The bottom slope influences both the direction and the amount of
the transported sediment due to the gravity force components acting on the sedi-
ment particles. In the case of a developing scour simulated by a numerical model,
the slope angle grows quickly and unhindered owing to the absence of a limiting
parameter for erosion or the slope gradients in the bottom evolution or transport
rate equations. Almost all transport rate equations were developed for a horizon-
tal bed. In an environment with bottom slopes, however, these equations do not
yield a meaningful solution. In addition to the flowing fluid, which gives rise to
shear stress at the bottom surface, a slope-induced downhill force is present which
must also be taken into account. This causes a change in the sediment transport
rate and shifts the point of inception of the sediment motion.

An additional slope-induced effect is the sliding of sediment grains when the
bottom angle attains the friction angle and a failure of bottom stability occurs.
Approaches taken from the literature which are used in the numerical model will

be discussed in the following chapters.
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2 Physical processes and model coupling

2.2.5.1 Transport rate

An increase in the transport rate on a downward slope is taken into account by
applying different equations for a longitudinal and a transverse slope. Eq. 2.62 as
developed by van Rijn (1993) based on the equation of Smart (1984), predicts the
amplification factor &k, for the transport rate on a downward slope. In Eq. 2.62 C'

is the Chézy coefficient and g is the slope angle in the longitudinal direction.

Although it seems reasonable to assume that the transport rate in the uphill
direction should be decreased, Damgaard et al. (1997) found that no modification
is necessary in this case. It is only necessary to take into account the modification
of the Shields parameter (see Chapter 2.2.5.2) for an increasing elevation when

calculating the bed-load.

1 dg(] 0.2 Tb 0.5
Lk, = = -0.5 [ 90 t 0.6 I 2.62
E 29 (d30) ¢tan ﬁL ((Tb - Tb,cr)) ( 6 )

The bed-load transport in the transverse direction was studied by Engelund
(1974), Tkeda (1988) and Sekine and Parker (1992). The approach of Tkeda was
chosen in the present study and implemented in the sediment transport model.

The transport rate in the transverse direction is described by:

0.5
gor = 15 (%) tan B gs (2.63)

Fig. 2.3 shows the effects of Eq. 2.63. Because the slope is perpendicular to the
acting shear velocity, the direction of sediment transport is influenced by the slope.
The resulting sediment transport rate vector is then no longer in the direction of
the shear velocity, but slightly inclined in the direction of the slope. The other
extreme situation is when the shear velocity is in the same direction as the slope.
Figure 2.4 shows how the sediment transport rate is increased by Eq. 2.62 in the

latter case without any alteration in its direction.

2.2.5.2 Critical Shields parameter

Sediment particles lying on a downhill slope are affected by a downhill force which

increases the particle mobility in the direction of the slope and vice versa in the
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Figure 2.3: Influence of a transverse slope on g,

uphill direction. Experimental data indicate that not only the transport rate
(Smart, 1984) but also the threshold conditions change on a sloping bed. It is
necessary to modify the critical mobility parameter 6. in order to take account
of this effect. The latter is decreased when the shear velocity points in the same
direction of the slope and increased when it points upwards.

The Shields parameter for a horizontal bed is thus adjusted by Eq. 2.64 and
Eq. 2.65 for longitudinal and transverse slopes based on the direction of the bed
shear velocity. Eq. 2.64 which was first presented by Schoklitsch (1914), was
derived from the equilibrium of forces acting on a single particle on a sloping
bed. A comparison with experimental data was found to show good agreement
(Whitehouse and Hardisty, 1988). An adjustment of the critical Shields parameter
for transverse slopes (Eq. 2.65) was also derived by Lane (1955) and Ikeda (1982),
and first presented by Leiner (1912). In Eq. 2.64 and Eq. 2.65, ¢ is the angle of
repose and [ is the actual slope angle. Fig. 2.5 shows a plot of both equations.
Although these equations are only defined for small slope angles, the results for

steeper slopes are still found to be reasonable. Both approaches converge to zero
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Figure 2.4: Influence of a longitudinal slope on ¢

when the slope angle converges to the friction angle. As a consequence, both

values must to be limited in order to avoid meaningless results.

_ sin(¢ — Br)
L= 752’71(;5 (2.64)

:|0.5

o = cos fr [1 — tan? Br/ tan® ¢ (2.65)

Similar investigations carried out by Chiew and Parker (1994), Hasbo (1995),
Whitehouse and Hardisty (1988), Lau and Engel (1999) and Luque and Beek
(1976) resulted in similar expressions for the correction of critical Shields para-

meter. The approaches of Schoklitsch and Leiner were used in the present study

owing to the reasonable results obtained.

34



2.2 Sediment transport and bottom evolution

I I
LRy Schoklitsch ~
e Leiner - - -

0.8 r i

o 0.6 —

04 r i

02 r i
0

0 0.2 0.4 0.6 0.8 1

B/
Figure 2.5: Correction factor of Schoklistch and Leiner

2.2.6 Sliding sediments

Developing scour gives rise to steep slopes along all sides of a scour hole. The
slope angle increases and converges to the friction angle (Table 2.2). This even-
tually leads to failure of slope stability and to sliding sediments along the slope
in the direction of the downward gradient. This process, which has been studied
in laboratory experiments (Roulund et al., 2005), must to be taken into account
in order to obtain reasonable results from the numerical model. The resulting
bottom geometry is therefore limited by this stability criterion. The scour process
is only defined for sandy material without any cohesive sediments. Fig. 2.6 shows
a definition sketch of the sediment grains sliding down a slope whith a slope angle
[ greater than the friction angle.

This process may be modelled in a number of different ways. Roulund et al.
(2005) developed an algorithm in which a sediment transport is initiated from the
highest points in the direction of the downward gradient. The unstable condition
of the bottom is transformed into a stable condition by an iterative procedure in

which the final geometry is attained in incremental steps.

An alternative method for simulating sediment slide is the iterative shifting of
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Figure 2.6: Slope with a slope angle 5 showing the sediment slide direction

sediment, without the need to calculate a transport rate and solve the bottom
evolution equation. Sediment shifting implies that the material at a higher mesh
point is transferred to a nearby neighbouring point lower than the sediment source,
and where the slope angle between those two points exceeds a certain limit. This
limit is naturally the friction angle plus a small threshold value. The algorithm is
terminated when the friction angle is attained. This guarantees that the resulting
bottom geometry satisfies one soil parameter and that no points of discontinuity
exist. As threshold value of two degrees proposed by Roulund et al. (2005) was

also used in the present model.
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2.2 Sediment transport and bottom evolution

Friction angle (¢)

dso [m] Rounded particles Angular particles
< 0.001 30° 35°

0.005 32° 37T

0.01 35° 40°

0.05 37° 42°
> 0.1 40° 45°

Table 2.2: Range of the friction angle (van Rijn, 1993)
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2.3 Soil model

When a slope develops, the slope gradient increases continuously until failure
occurs. The sliding of sediment grains then takes place in order to re-establish
a stable slope condition. Flow and fracture are the two main failure modes. A
sandy soil tends to flow when the stress exceeds a critical value, whereas fracture
is of more interest when considering rocks and concrete. The modelling procedure
thus involves a calculation of the deformations, a determination of the point of

failure and then an estimation of how the material responds under flow conditions.

The first part of this procedure is dealt with by an elastic model that approxi-
mates the material behaviour as beeing linear elastic (Chapter 2.3.2.1). Secondly,
a failure criterion is introduced which is suitable for determining the transition

point between linear elasticity and plastic deformations.

Although soil is a mixture of particles of different minerals in which the pore
spaces are filled by either a fluid, gas or both, it is treated and idealised as a
continuum. This implies that it may be subdivided into a number of elements
whereby each element represents a part of the continuum. Although the partic-
ulate nature of soil is neglected in most engineering applications, several theories

exist which take this into account (Davis and Selvadurai, 2002).

2.3.1 Stress and strain

Forces acting on a body cause a deformations which may be expressed with the
aid of a displacement vector (Eq. 2.66). This vector points from the origin to the
location where a point has moved due to the deformation process. By assigning
a vector to every point of the body a vector field covering the complete volume
is obtained. Taking spatial derivatives of the components of the displacment
vector gives the displacement gradient matrix Vu (Eq. 2.67). The components are

denoted by ¢ for the extensional strains and v for the shear strains, respectively.

The stresses and corresponding strains resulting from the acting forces are re-

lated by the constitutive equations. These equations, which are material-dependent,
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are described in Chapter 2.3.2.

U
U= | v (2.66)
w
[ e, ] [ 2 0 0]
o)
Gy O a_y 0 u
€. 0o 0 2
= v
a 9
Yy 3 or 0 W (2.67)
yz oz Oy
) 3
L fY:vz | L g 0 % |
€ = A u
z
y
X
dz
Tyz
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Tyz Tyx y
Tyy
Oy
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| dy |

Figure 2.7: Forces acting on a single element
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2 Physical processes and model coupling

Considering static equilibrium, body and contact forces within the body and
agitating forces acting on the body surface summate to zero. The body force in
the present context is simply the gravitational force. The relationship between

agitating forces and stresses within the body is expressed by

0o, OTyy  OTys

Bty T
A 268
or Voy To. =0

ATo +F

whereby o and 7 denote the normal stress and the shear stress, respectively.
Agitating forces are denoted by F. Fig. 2.7 shows the corresponding forces acting

on a single element.

These three equations must be satisfied at all points in the body. The right-
hand side of these equations is zero due to the assumption of static equilibrium.
For the solution of the above-mentioned equations it is necessary to determine
the three displacements, the six strain components and the six independent stress
components. The strains from the corresponding displacements are computed by
the finite element method. The equilibrium condition alone yields only three equa-
tions, whereas a total of six equations must be solved for the stress components.

The missing equations are provided by the constitutive equations.

In a finite element model the body is divided into single elements forming a
mesh. The stresses and strains are calculated at spatial points within these ele-
ments by using Eqs. 2.66-2.68. A description of the finite elements used for the
spatial discretization and the method of solution of the above-mentioned equations

are presented in the following Chapters.

2.3.1.1 The wedge element

The sediment transport and flow models are based on a mesh comprised of triangu-

lar elements. A mesh of wedge elements (Fig. 2.8) is used for the three-dimensional
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Figure 2.8: Wedge element, global (left) and local (right) coordinates

computation of flow. These prismatic elements are merely extruded from the mesh
of triangles used for the two-dimensional computation of sediment transport. Both
meshes make use of the same information regarding element connectivity and mesh
point locations on a horizontal plane. The same wedge elements are also imple-
mented at a later stage in the three-dimensional soil model. The shape functions
of the three-dimensional wedge element are given by (Zienkiewicz and Taylor,
2000):

Ni=501-r—s)(1+t) Ny=351-r—s)(1—¢)
Ny = 3r(1+1) Ny = 3r(1 —1t) (2.69)
Ny = 1s(1+1) Ne =1s(1—1)

Forming the derivatives of the shape functions leads to:

ONi 9N, ONs ONs ONs ONs
or or or or or or
UN = 9N 9Ny 9Ns 9Ni 9N 9Ng
Js Js Js Js Js Js
ONi 9N, ONs ONs ONs ONs
ot ot ot ot ot ot

[ e s o —(1-1 (A=t 0
=3 | —a+n 0 (+n  —(-1 0 (1-t) | (270)
(1—r—ys) r s —(1=r—s) —r —s
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2.3.1.2 Numerical integration

The numerical integration of the shape functions (Eq. 2.69) or their derivatives
(Eq. 2.70) is performed using the Gauss quadrature method. The desired functions
for an element are evaluated at the Gauss points. Summing up the single values
and multiplying them by their weightings yields the integral over the element area.

All quadrature rules take the form:

NG,T

[ s =S Wi @)

Here, W; is the weighting function at the coordinate position r; within the ele-
ment. Extending the quadrature method to three dimensions leads to the following

expression (Eq. 2.72):

1 p1 pl Ng,r Na,s Na,t
[ [ strstards =303 S WirwWils) Walta) £ s 55,10
-1J-1J-1 i=1 j=1 k=1
(2.72)
For a wedge element the location of the Gauss points and the corresponding
weightings are as followed (Ratke et al., 1996):

GPl | GP2 | GP3 | GP4 | GP5 GP6 GP7 GP8
r 1/3 | 3/5 | 1/5 1/5 1/3 3/5 1/5 1/5
s 1/3 | 1/5 | 3/5 1/5 1/3 1/5 3/5 1/5
t 173 | \/1/3 173 | V13 | =/1/3 | =/1/3 | =/1/3 | =/1/3

W,Ww; || -9/32 | 25/96 | 25/96 | 25/96 | -9/32 | 25/96 | 25/96 | 25/96

Wi 1 1 1 1 1 1 1 1

Table 2.3: Gauss point locations and weightings
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Figure 2.9: Rheological models

2.3.2 Constitutive equations

While the kinematic equations relate strain to displacement gradients, and the
equilibrium equations relate stress to the applied forces at the boundary, the
constitutive equations relate the applied stresses to strains. These equations take
into account the considered material and it’s physical parameters. The constants

in these equations express the behaviour of the material under the action of stress.

In the following chapter the equations for an isotropic, elastic material are
presented. As anisotropic material is not considered in the present study, the
equations for this case are omitted.

2.3.2.1 Linear elasticity

Elasticity describes the behaviour of a material that undergoes a deformation un-

der the action of stress and returns to its original form once the stress is removed.
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2 Physical processes and model coupling

Figure 2.10: Linear elastic material behaviour

If strain and stress are related by a linear function, this is referred to as linear
elasticity and may be described by Hooke’s law (Eq. 2.73). Here, o is the stress
acting on the material, € is the strain and F is the elasticity modulus (also known
as Young’s modulus). The rheological model (Fig. 2.9) is a spring with a desig-
nated stiffness E. The shear may be calculated by means of Eq. 2.74, where G is

the shear modulus and ~ is the twist angle.
c=FEc¢ (2.73)

T=Gv (2.74)

Another important material parameter is Poisson’s ratio, which describes the
contraction in the lateral direction when a material is extended. In Eq. 2.75, vp
is Poisson’s ratio, which is the ratio of the longitudinal strain ¢; to the transverse
strain &;.

=l (2.75)

UVp =
&t

For an isotropic elastic material (i.e., an elastic material for which the properties

are the same in all directions) there are only two independent material constants.
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2.3 Soil model

The relationship between these three moduli are given by the equation

FE
=50 (2.76)

In a three-dimensional, rectangular Cartesian coordinate system the six equa-
tions of Hooke’s law take the form (Timoshenko and Goodier, 1951)

[ Oz | 1 vp vp 0 0 0 1 T € |
oy vp 1 vp 0 0 0 €y
o, B 5 vp vp 1 0 0 0 €,
Ty  (I4+vp)(1-2vp) 0 0 1—% 0 0 Yey
Ty 0o o0 = 0 Yy
| T | I 00 0 == | e
o = D €
(2.77)

2.3.2.2 Material nonlinearity

The linear elasticity described in the foregoing chapter is only valid for a very
idealised case in which the agitating forces acting on a body lie in a particular
range. The behaviour of the material outside this range is no longer linear and
fully reversible. Instead, the relationship between stress and strain is a compli-
cated function containing coefficients in the equations that depend on the solution.
As the material begins to flow, parts of the deformations are permanent. Fig. 2.11
shows the behaviour of a perfectly plastic material. The flow is constant when
reaching the corresponding critical stress state is attained. No hardening or soften-
ing of the material occurs. This behaviour is not taken into account in the present

study because the considered (sandy) material does not exhibit these effects.

Considering the process of nonlinear material behaviour in a finite element ana-
lysis leads to a more complex analytical problem than in the case of material
linearity. Two main solution procedures exist for this problem. The first method
implements a once-only constructed stiffness matrix which is identical to the ma-

trix for the linear elastic case. Nonlinearity is taken into account by iteratively
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Figure 2.11: Elastic - prefectly plastic material behaviour

increasing the (external) load vector, whereby each single iteration involves an

elastic analysis.

€ =€+ &p (2.78)

The total strain of a yielding material (Eq. 2.78) is the sum of recoverable strains
€., which may be described by the theory of linear eleasticity, and the irrecoverable
strains ¢,, which are present after unloading. The latter must be calculated by a

method suitable for describing plastic material behaviour (see Chapter 2.3.2.6).
2.3.2.3 Invariants

The stress tensor expressed in Cartesian coordinates is defined as

Oy sz Tz
Tye Oy Tyz (2.79)

Tex Tzy Oz

This is equivalent to the principal stress tensor (Eq. 2.80), which defines the max-

imum and minimum normal stresses in a plane. These are always perpendicular
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to each other and oriented in directions in which the shear stresses are zero.
{o1 09 03} (2.80)

Although the principal stresses give the magnitude of the stresses acting at a point,
a disadvantage of this tensor is the need for information on how the coordinate
system is oriented in physical space. The use of invariants is therefore often more
practical than the use of principal stresses. Invariants are scalar functions of
tensors that have the same values regardless of which coordinate system they are
referenced to. Using the notation of Smith and Griffiths (1998), the invariants are
given by
s = %(a$+ay+az)

t = Zllow—0,)"+(0y—0.)" + (0. —0u)" +
672, + 672 + 672]3 280
xy Yz xz

0 = Larcsin <7_3}§J3>

where s denotes the distance from the origin of the coordinate system to the
plane (Fig. 2.12) in which the considered point is located, ¢ is the perpendicular
distance of the point from the space diagonal and 6 is the Lode angle which gives
the angular position of the point in the plane. The required J3 and s; are defined
by

J3 = $38y8, — 5357'52 — 8y T2, — S.TTY? + 2Ty Ty Ton (2.82)
and
Sy = (20, — 0y — 0,) /3, etc. (2.83)

As the given invariants (Eq. 2.81) have no physical meaning, a more expressive
formulation is given by Eq. 2.84. Here, 0, is the mean stress and & is the stress
contained in the deviatoric tensor. The invariants in this form are adopted in the

following chapters.

Oy =

Sl

(2.84)
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%

Figure 2.12: Mohr-Coulomb failure criterion

Failure surface

The principal stresses and invariants are related to each other by the following

equations:
o1 = op+ 2asin(d — %)
oy = Op+ §5sin9
o3 = Op+ 20sin(0+ )

2.3.2.4 Failure criterion

(2.85)

In order to describe the plastic behaviour of soil a criterion is required to distin-

guish between the material in a state of elastic deformation or plastic deformations.

Several criteria have been developed which are suitable for different kinds of mate-

rial. They may be distinguished from each other by the form of the yield surface in

the principle stress space. Fig. 2.12 shows the criterion of Mohr-Coulomb, which

provides an adequate description of the plastic behaviour of sandy soil. As the

latter depends on the first and third principle stresses, it takes the form of an
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irregular hexagonal cone. Using the friction law
T=c—o0 tan¢ (2.86)

the Mohr-Coulomb failure criterion may be written as

01 — 03

01 —|—O'3 i
2

5 ing¢g —

—ccoso (2.87)

where c is the cohesion factor, ¢ is the friction angle and o1 > 05 > 03. Substitu-
ting Eqs. 2.85 into Eq. 2.87 leads to the following expression for the Mohr-Coulomb

criterion:

(2.88)

0 in @ si
F =g, sin¢+a(cos i smgf)) — Ccos ¢

V3 3
The form of the hexagonal cone is defined by k; and k. (Fig. 2.12) (Findeif, 2001).
The latter are dependent on the cohesion factor and the friction angle, and are
defined by

k= 2v/6 ¢ cos @
3 4 sin ¢
(2.89)
. 26 ¢ cos ¢
¢ 3—sing

When the stress reaches the yield surface, the associated plastic flow leads to
physically unrealistic volumetric expansion or dilation (Smith and Griffiths, 1998).
In this case, the non-associated flow rule is applied. The plastic strain is then
described by a plastic potential function ), which is geometrically identical to the
yield function F'. In this case, however, the dilation angle 1) is used instead of
the friction angle ¢. Difficulties arise in the determination of the derivative of Eq.
2.96. Because the form of the Mohr-Coulomb yield surface is non-continuous, the
derivative in Eq. 2.96 becomes indeterminate. This occurs when the Lode angle
6 = +30°. In order to ensure numerical stability the hexagonal surface is replaced

by a conical surface. When the following condition holds

|sin@| > 0.49 (2.90)
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the value for the Lode angle in Eq. 2.88 is replaced by 8 = 30° or § = —30°,
depending on the sign of 6.

2.3.2.5 Body-loads

Using algorithms with a repeated elastic solution, such as the constant stiffness
method, it is necessary to redistribute the loads acting on the system in order
to achieve convergence (Smith and Griffiths, 1998). The small load increments
involved in such algorithms lead to a system of equations whose solution yields
small increments of displacement (Eq. 2.91). Here, K is the stiffness matrix and p

are the internal and external loads. The index ¢ denotes the number of iterations.
Ko =p' (2.91)

In order to obtain the total strain increments of the system the displacements
of each element u are extracted from the system displacement vector  and then

calculated via the strain-displacement relationship
Ac' = Bu' (2.92)

In regions where the stress is beyond the yield surface the total strains include an

elastic and a visco-plastic component, as expressed by
Ac' = (Ae® + AeP) (2.93)

Considering only the elastic strain increments Ae€, the corresponding stresses can

easily be calculated using the stress-strain relationship
Ao = D¢ (Ae®) (2.94)

The stress increments from Eq. 2.94 are then added to the already existing incre-
ments from the previous load step, and the actual stress acting on the system may
be used in the failure criterion equations. In case of stress redistribution the load
vector p (Eq. 2.91) is altered. The load vector itself is comprisd of two different
types of load (Eq. 2.95), namely the actual load increment p, and the body-load
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increment p,, which change with each iteration.
p' = pa + D) (2.95)

Commonly used methods for calculating the body-loads are the initial stress
method and the method of visco-plasticity (also referred to as the initial strain
method). The latter method, which was adopted in the present study, is described

in the following chapter.

2.3.2.6 Visco-plasticity

Taking a viscous or a visco-plastic material behaviour into account leads to a time-
dependent relationship between strains and displacements. This may be illustrated
by means of a damper with a relaxation time in the rhelogical model (Fig. 2.9). A
fundamental description of the theory of visco-plasticity may be found in Perzyna
(1966), Perzyna (1971) or Zienkiewicz and Cormeau (1974). The approach of
Zienkiewicz and Cormeau (1974) was used by Smith and Griffiths (1998) to for-
mulate a numerical algorithm which is implemented in the present study. When
simulating and analysing soil strains and displacements under saturated condi-
tions, a pronounced time-dependency exists, which is mainly due to transport
processes such as the flow of pore fluid. The cases considered in the foregoing are
all under saturated conditions with a flow acting on the upper surface of the bed.
It is therefore necessary to take the time-dependency of the process into account.
This is realised in the constitutive equations in the form of visco-plasticity. As an
alternative, this process could be modelled as a two-phase process involving the

soil and the pore fluid flow.

In the method of Zienkiewicz and Cormeau (1974) the material is allowed to
attain a stress state beyond the failure criterion (Fig. 2.12). In contrast to the
elasto-plasticity, whereby the stress is immediately redistributed within the com-
putational mesh to force the stresses to reach the failure surface, stresses beyond
the failure surface are permitted for a small period of time. These are the visco-

plastic strains that are related to the amount by which the yield has been violated
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by

gVF = Fg—g (2.96)

where ¢V is the visco-plastic strain, o is the stress and Q = Q(o, q) is the plastic
potential function that describes the material behaviour in the case of plasticity
(e.g. softening, hardening or ideal plasticity). The time-dependency is taken into
account by summating the increments of the visco-plastic strain rate (Eq. 2.96)

at each time step. This may be expressed by
(6"7) = At (V7)) (2.97)
and
(AVP) = (AVPY T 4 (5eVF) (2.98)

The time step At as derived by Cormeau (1975), is a pseudo time step which
varies for different soil materials in order to achieve numerical stability. The time

step for “von Mises” materials is

4 (1 -+ I/P)
At = ———2 2.
55 (2.99)
and for Mohr-Coulomb materials
4(1 1-2
Ap = HLAve)(1 = 2vp) (2.100)

E(1 — 2up + sin? ¢)

In order to calculate the visco-plastic strain rates the derivatives of the plastic

potential function with respect to the stresses are required. These are expressed
by

@ _0Q 9oy, N 0Q 0.Jy N 0Q 0.J3
do 9o, Oc 0Jy 0o 0Js do

with the invariant J, = 1/2¢%. In a numerical model the visco-plastic strain rate

(2.101)

(Eq. 2.96) is calculated acording to
e"P = F(DQ1 M' + DQ2 M? + DQ3 M?) o (2.102)

Here, M'c, M?c and M3c are vectors that represent do,,/0c, 8.J,/0c and
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2.3 Soil model

0J3/0o, while DQ1,DQ2 and DQ3 are scalars equal to 0Q/0o,,, 0Q/dJ, and
0Q/0.J3, respectively (Smith and Griffiths, 1998; Zienkiewicz and Taylor, 2000).

The body-loads p} (see Chapter 2.3.2.5) are then calculated by
ph=pit+ Z /BTDe(cSEVP)i d(element) (2.103)
element

The body-loads are accumulated at each pseudo time step at for all elements that
contain a yielding Gauss point. This is an iterative process which is repeated until

no point violates the yield surface within a given tolerance.

2.3.3 Solution strategies
2.3.3.1 Constant stiffness matrix

Denoting the previously mentioned equilibrium, strain-displacement and consti-
tutive equations by their abridged forms as already introduced in Eqs. 2.68, 2.67

and 2.77, the three sets of equations are represented by

AT¢ = —-F
o = De (2.104)
e = Au

where A is the strain-displacement operator, o is the stress tensor, D is the
constitutive stress-strain relationship, € are the strains and u the displacements.
The purpose of the numerical model is to calculate the displacements (and hence
the strains) for a given stress resulting from gravity and external loads. The
above-mentioned set of equations is solved by eliminating o and € from Eq. 2.104.
This is carried out by inserting the third equation from the set of Eqs. 2.104 into

the second equation and the result of the latter into the first equation:

ATe = _F
A™De = -F (2.105)
ATDAu = -F

The result of this elimination process is a set of partial differential equations
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2 Physical processes and model coupling

which are dependent on the continuous space variables u,v and w. In order to
solve these equations the considered body is discretized by finite elements such as
the prismatic element described in Capter 2.3.1.1. The continuous variables are

then replaced by the appropriate shape functions.

U; = [Nl N2 N3 N4 N5 N6] = Nu (2106)

In Eq. 2.106, N, are the shape functions and 7 = z, v, 2.

Discretization of the continuous variables must be taken into account for the
strain-displacement operator. FExpressing the shape functions in matrix form

yields
0 O
N, 0
0 N, (2.107)

u

N
S = 0
0

Nu:Nv:Nw: [Nl N2 NB N4 N5 N6]

After inserting the latter into Eq. 2.105, the last step is to integrate the shape
functions (Chapter 2.3.1.2) over space. This leads to the stiffness matrix for the
considered body (Eq. 2.108).

Ms:///ASTD(AS)dxdydz:///BTDdedydz (2.108)

The result is a system of linear equations (Eq. 2.109) comprised of the stiffness
matrix, the external loads, and the displacement vector, which must be solved
for the system. The resulting displacements may then be used to calculate the

corresponding strains and stresses within the body.
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2.3 Soil model

Msu = —F (2.109)

2.3.3.2 Element-by-element techniques

Regardless of whether the stability analysis is linear or nonlinear, it is necessary

to solve a system of linear equations (Eq. 2.109). This generally takes the form

Ax=Db

where A is the coefficient matrix, b is the result vector and x is the vector con-
taining the unknown system variables. A solution method such as the Gaussian
elimination method could then be applied to calculate x. This would require a sys-
tem matrix for the entire computational domain, however. Assembling a matrix for
the whole system even using special storage schemes such as the skyline technique
(Bathe, 1996) would be far too expensive, especially for the three-dimensional
case. In view of this, the element-by-element technique was implemented as an al-
ternative method in the present study in order to ensure that the required memory
space is limited to a manageable size. The algorithm used with this technique is
based on the method of conjugate gradients described by Jennings and McKeown
(1992).

The steps outlined in the following equation (Eq. 2.110) are performed k times

k+1

in order to minimize the difference between x and x*.
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u* = ApF
b (r*)Tr*
()7

(2.110)
rhtl — pk _ ok
ﬁk B (rkJrl)TrkJrl
o (rk)Trk

pFtl = phtl | ghph

where the initial value for p is calculated according to

p’ =b - Ax’

The vector x is initialized with a value that should be as close as possible to
the final solution in order minimize the number of iterations. In all operations
except the first in Eq. 2.110 only vectors and scalars are involved. The first
operation is a matrix-vector multiplication, which is performed according to the
above-mentioned element-by-element technique. By this means, the local products
of the p vector and the element stiffness matrix ¢ are assembled consecutively to
form the global result vector. Summing up the local results leads to the global

results:
u=>» Ms;b; (2.111)

2.3.3.3 Boundary conditions

A solution of the matrix given in Chapter 2.3.3.1 also requires the specification of
boundary conditions in order to obtain a solution. The specification of boundary

conditions in the considered experiments is fairly simply in so far as a mesh point
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2.3 Soil model

is either allowed to move in a spatial direction or not. In the case that a mesh
point is fixed the result is known to be zero. The line and column in the matrix
corresponding to the node and spatial direction for a non-moving boundary con-
dition may thus be neglected as these are not required for the solution of the other
components of the matrix. In the case a boundary node which is allowed to move
in a spatial direction, the contributions for this node are retained in the matrix

and the system of equations.

In practice there are two alternative ways of treating the above-mentioned
boundary condition for a fixed node. The first variant is to eliminate the cor-
responding line and column from the system of equations so that they are not
taken into account at all. The variable is then simply set to zero. As an alterna-
tive the (non-zero) value of a variable may be prescribed by adding a large number
(e.g. 10?Y) to the leading diagonal of the stiffness matrix in the row corresponding
to the considered variable. Additionally, the value of the b vector in that row

must be modified by multiplying it with the adapted stiffness term (Eq. 2.112).

(M;; +10*) ¢ + [small terms| = [prescribed value] x (M;; +10%) (2.112)

As a result the considered variable will take the value ¢ = [prescribed value],
provided the [small terms| are negligible compared to the large term added. This
has the advantage that not only zero but any arbitrary value may be prescribed

at a given meshpoint.

Boundary conditions involving gradients of the unknown are not discussed here

as they are not required in the experiments considered in Chapter 3.

2.3.4 Influence of pressure on soil stability

Considering wave-induced scour as outlined in Chapter 3.2 leads to the question
of the influence of wave pressure loading on soil stability. The soil consists of
small particles, whereby the stresses resulting from gravity and external loads are
transferred by normal stresses across the particle contact surfaces. Shear forces

can only exist as friction between the contact surfaces when a normal stress is
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present. As the soil is saturated, the voids between the soil particles are filled
with water. In a natural environment it is likely that small amounts of gas are
present in the pores (Tgrum, 2007). The gas is considered to be part of the liquid
and can be taken into account by altering the compressibility of the fluid (de Groot
et al., 2006). Normal forces are not only transferred by the soil particles but also
by the pore water. This means that the effective normal stress consists of the
total normal stress from the soil skeleton and the pore pressures. In the event
that the pore pressure increases and becomes equal to the total normal stress, the
effective normal stress becomes zero. Consequently, shear forces can no longer
be transferred. Water and sediment then convert from a former solid state into
a liquefied state. This liquefaction may not only be caused by increased pore

pressure but also by a decrease in the total stress.

In a maritime environment the described behaviour is basically due to two
different effects. The first of these effects is due to wave-induced momentary
pressure variation which propagates into the soil and compresses and decompresses
the fluid/gas mixture. The second effect is due to a decrease in the pore space
with no or only slight drainage of the pore fluid. This causes a gradual increase
in the pore pressure, which results in a residual pressure contribution which may
possibly neutralise the total normal stress. The latter effect is a result of the
movement or rearrangement of sediment particles in a loose soil. Liquefaction can
only occur if the particle size distribution of the soil satisfies certain requirements.
Firstly, the soil must be fine enough in order to prevent drainage of the fluid while
pore pressure is accumulated, and secondly, it must be non-cohesive in order that
particles can move and rearrange freely. The range of particle sizes which allows

liquefaction to occur is shown in Fig. 2.13.

Momentary liquefaction only occurs if the pore fluid is compressible, i.e. a
small amount of gas must be present in the fluid. Otherwise, the reduction in
the effective stress is insufficient to cause a momentary liquefaction, even directly
below the soil surface (de Groot et al., 2006). On the contrary, the compressible
nature of the fluid permits the flow and storage of additional water in the pores
when the external pressure increases (under the crest). When the pressure reduces
(under the trough) the additional fluid causes an increased pressure in the pores

which lowers the soil stability and may possibly lead to total liquefaction.
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Figure 2.13: Risk of liquefaction as a function of particle size distribution
(Damgaard et al., 2006)

Wave-induced liquefaction caused by a residual excess pore presssure was stud-
ied by Sumer et al. (2006b) in a wave flume. A loosely-packed silty sediment with
a particle diameter of 0.06mm was placed in the flume and measurements of the
pressure in the soil and the water depth were made. The results of liquefaction
and compaction were extracted from videotape recordings made during the tests.
The observations range from the point in time when waves are introduced up to
the point of soil liquefaction and compaction and the occurrence of ripples on the
bed. This time series is shown schematically in Fig. 2.14. Directly after the waves
begin to propagate through the flume, the pressure in the soil pores begins to rise.
The wave-induced cyclic shear stress causes the sediment particles to rearrange,
which results in a decrease of pore volume and hence an increase of pore pressure.

When the excess pore pressure (= the difference between the hydrostatic pressure
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and the actual pore pressure) attains the total normal stress, the soil liquefies and

the water and soil behave like a liquid.

Pressure builds up (A)

Compaction starts

‘ l
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Figure 2.14: Time series of liquefaction and compaction (Sumer et al., 2006a)

The excess pore pressure increases in the vertical direction with a maximum
at the impermeable base represented by the bottom of the sediment box in the
considered experiment (cf. Fig. 2.15a). As a consequence, a vertical pressure
gradient exists which drives the pore fluid upwards out of the soil. Reducing the
amount of water in the pores leads to settlement and consolidation of the soil
particles. This process begins at the lowest point of liquefaction and is followed
by an upward movement of the compaction front (cf. Fig. 2.15b) until the mud-
line is reached. The process is accompanied by a decrease of pore pressure. The
consolidation process additionally leads to a decrease in the height of the sediment

layer.

The above-described process of liquefaction was simulated by Dunn et al. (2006)
using a two-dimensional numerical model. The results were compared with an ana-

lytical solution as well as with the experiments of Teh et al. (2003). The model
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Figure 2.15: Pressure distribution (a) and depth of compaction front and soil sur-
face (b) (Sumer et al., 2006b)

implements Biot’s consolidation theory (1941) in order to calculate pore pressures
and soil deformation. A detailed knowledge of the soil and its parameters is
necessary in order to prescribe realistic boundary conditions for the numerical
model. Although these data were available for the analytical solution as well as
for the considered validation experiments, such detailed information is rare to find
for soil in a natural environment or even for laboratory experiments. As such, the

number of cases in which this type of model may be applied is severely limited.
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2.4 Model coupling

Having described the individual models and the considered processes in the fore-
going chapters, the interaction of the latter will now be examined in closer detail.
The description which follows is valid for all of the conducted experiments given
in Chapter 3.

All sediment transport and bottom evolution results are based on a flow period
representative of the flow regime present at the structure concerned. In the case
of a propagating wave this is clearly the wave period, whereas for a steady flow,
this is the period of a wake separation. The periods are held constant for the

entire scour simulation.

Prescribing regular waves as a boundary condition is carried out by calculating
the wave properties by means of a suitable mathematical theory, as described in
Appendix A. The imposed waves are of a periodic character, which means that
a stable wave is always bounded by a preceding and a following equal wave. The
first wave imposed cannot be used as a representative wave as it is not stable
and is slowly damped while propagating through the channel. Tests showed that
usually the third imposed wave is stable and gives good results with regard to the
free surface and velocities. The first two waves are thus neglected and are not
used for calculating sediment transport and bottom evolution. These are part of

the initial phase, as outlined in Fig. 2.16.

In the case of a steady flow the current is gradually increased at the boundary
in order to obtain the first result period. After calculating the bottom evolution
for the first period the flow result from the previous run is projected onto the new
geometry and then used as the initial value. In the following initial phase of the
flow calculation the velocity adapts to the new (bottom geometry) conditions and
the flow regime is reconstructed. Afterwards, the next representative period of

flow is simulated and is used as input for the bottom evolution.

The result period obtained from the flow model is used repeatedly for calculating
the bottom evolution. The number of iterations is limited on the one hand by the
extent of bottom evolution, as the calculated shear stress is only valid for small
deviations of the bottom geometry. On the other hand, a frequent recalculation

of the flow is not possible as the flow simulation is comparatively time intensive.

62



2.4 Model coupling

!

Wave theory Flow calculation (3D)
(boundary condition) . .
Airy or ---->| Initial phase + One wave period /

Stream function H,u one period of wake separation

shear stress

T

Sediment transport /
bottom evolution

Y
A

Optional: Soil stability analysis

. J

updated bottom geometry

Zs

Figure 2.16: Model dependencies

How often a flow result is re-used is defined individually for the particular case
concerned.

The resulting bottom geometry is then imported by the flow model and the
mesh is adapted to the new conditions. Following the initial phase when the flow

regime is reconstructed, a new period of flow results is calculated.
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3 Numerical experiments and

model validation

3.1 Flow-induced scour

3.1.1 Abutment

Local scour at abutments has been studied by Radice et al. (2006). A flow channel
made of plexiglass (Fig. 3.1) with a length of 5.8m, a width of 40cm and a height
of 16cm was used for this purpose. The effective duct height after installing
roughness elements on the bottom upstream and downstream of the sediment
basin was 15.5cm. The top of the channel was also covered with plexiglass so that
the channel could be pressurised during the tests. Two different types of abutments
were used, namely a vertical wall (Fig. 3.2) and a trapezoidal abutment with side
lengths of 10cm and 8cm. The sediment used consisted of artificial cylinders made
of PVC with a median equivalent diameter of 3.6mm. The uniformity coefficient
was close to unity and the specific gravity of the sediment was (ps — p)/p = 0.43.
A water discharge of @ = 18.51/s was used in all of the conducted experiments.
This was chosen to match the incipient motion of particles.

In this experiment the channel was covered with plexiglass. This was taken into
account in the numerical model by freezing the free surface at the given water
depth and prescribing a wall boundary condition. The cover as well as the side
walls were assumed to be rough and a small Nikuradse roughness coefficient was
prescribed at these boundaries. At the bottom the roughness coefficient was taken
to be as three times the median particle diameter (ks = 3ds).

The numerical scour simulation was performed using different sediment trans-

port rate equations. The reason for this is that the results were known to differ
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considerably depending on the equation used. The results obtained using the
equation of Engelund and Fredsge were found to agre well with the laboratory
results regarding the scour depth at the nose of the abutment. The scour depth
attained approximately 20cm in the laboratory as well as in the numerical expe-
riment (cf. Fig. 3.4 and Fig. 3.3). The simulated geometry of the erosion channel
of the right of the abutment was found to be too broad and too short, however
(Fig. 3.7). The results obtained using the equation of Meyer-Peter and Miiller
on the other hand showed better agreement regarding the scour shape. The long
erosion channel to the right of the abutment was similar to the measured shape.
Unfortunately, the scour depth was underestimated by about 18%.

The scour depth at the corner of the abutment was not correctly predicted by
the model regardless of the sediment transport equation used. This is possibly
the result of the coarse spatial discretisation at this location, which was optimized
to improve the efficiency of the computational scheme. The alternate calculation
of flow and sediment transport may also contribute to this effect as well as the
fact that an artificial sediment with an unnatural specific gravity was used in
the experiments. The sediment transport rate equation and the equations for
calculating incipient motion were derived from measurements and observations
involving natural sediment particles with a much higher specific gravity. This
means that the implemented equations are inappropriate for the artificial sediment

used in the simulations.
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Figure 3.1: Flow channel (Ballio et al., 2006)
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Figure 3.2: Definition sketch of the vertical wall (Radice et al., 2006)
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Figure 3.3: Temporal evolution of measured scour (Ballio et al., 2006)

—0.25
I De%th at ablutment nose _r
Depth at abutment corner ---
—0.2 ‘
—0.15 :
—0.1
—0.05
0 l | i ,
’ 3 60 90 120

Figure 3.4: Temporal evolution of scour using the transport rate equation of En-
gelund and Fredsge
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Figure 3.5: Temporal evolution of scour using the transport rate equation of
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Figure 3.6: Scour after attaining the equilibrium depth (Radice et al., 2006)
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Figure 3.7: Scour isolines after 2h using the transport rate equation of Engelund

and Fredsge
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Figure 3.8: Scour isolines after 2h using the transport rate equation of Meyer-Peter
and Miiller

Figure 3.9: Scour hole after 2h45m (Ballio et al., 2006)
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Figure 3.10: Resulting scour after 1800s using the transport rate equation of En-
gelund and Fredsge
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Figure 3.11: Resulting scour after 3600s using the transport rate equation of En-
gelund and Fredsge
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Figure 3.12: Resulting scour after 7200s using the transport rate equation of En-
gelund and Fredsge
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Figure 3.13: Resulting scour after 1800s using the transport rate equation of
Meyer-Peter and Miiller
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Figure 3.15: Resulting scour after 7200s using the transport rate equation of
Meyer-Peter and Miiller
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Figure 3.16: Flow pattern around a cylinder (Melville and Coleman, 2000)

3.1.2 Vertical cylinder

The flow around a circular cylinder (Fig. 3.16) features several effects that lead to
an increased shear stress acting on the soil surrounding the structure. A boundary
layer flow has a vertical pressure gradient which leads to a downward directed
flow on approaching a vertical pile. This results in a horseshoe vortex, which is
recognised as being one of the main mechanisms promoting scour. The flow is
also contracted, which leads to an increased velocity on both sides of the cylinder.
Vortex shedding tends to convey the sediment particles that have been eroded

downstream away from the pile.

The flow around a pile may be described by dimensionless parameters. Whereas
the Keulegan-Carpenter number (Eq. 3.3) describes the flow around a pile in an
oscillatory flow, the Reynold’s number describes the flow regime at a cylinder

approached by a steady flow. This is defined by
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Figure 3.17: Flow-induced scour in a laboratory experiment (Eadie and Herbich,
1986)(left) and scheme of vertical cross-section (right)

(3.1)

A vortex system does not develop for a Reynold’s number below five. With
increasing Reynold’s number (>40), vortex shedding occurs and a vortex street
develops (Sumer and Fredsge, 1997). The presented case of flow and scour around
a cylinder has a pile Reynold’s number of 46000. This means that the wakes are
fully turbulent while the boundary layer is still laminar. The thickness of the
boundary layer according to Schlichting (1982) may be approximated by

%:o(é%) (3.2)

where ¢ is the boundary layer thickness and D is again the diameter of the

cylinder. The presence of a boundary layer causes deceleration of the flow close to
the cylinder wall, and the resulting velocity gradients lead to vortices that occur

for Reynold’s numbers greater than five.

In the case of an erodible soil the above-mentioned flow effects lead to intense
sediment transport close to the structure. A scour hole develops with slope angles
approaching the angle of repose. At locations where the slope angle exceeds the
angle of repose, sediment sliding occurs. This process continues until the slope
returns to a stable condition. An example of such a scour hole is shown in Fig.
3.17. High slope angles are especially noticeable in the upstream part of the scour

hole where the primary vortex is present.
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Figure 3.18: Experimental setup (Roulund et al., 2005)

The presented case of local scour around a vertical pile in a steady flow is based
on the work of Weilbeer (2001), who compared the results of his numerical model
with the measurements of Roulund (2000); Roulund et al. (2005). In contrast to
the work of Weilbeer, a transport rate in direction transverse to the acting shear
stress is also taken into account in the present study (see Chapter 2.2.5.1). The
sediment transport rate equation of van Rijn was found to yield the best results

in the case considered.

Figure 3.18 shows the experimental setup for the above-mentioned laboratory
experiment. The flow channel was 9.90m long and 3.60m wide. The water depth
was 40cm and the averaged velocity in the channel was given as 46cm/s. The
10cm diameter pile used in this experiment was placed in a sand pit containing
sand with a particle diameter of 0.26mm. In the numerical experiment the mesh
and numerical parameters for the flow were the same as used by Weilbeer. The
results of the laboratory experiment are shown in Fig. 3.19. The scour hole is seen

to have a round shape while the ripples are indicative of live-bed conditions.

The results of the flow simulations are comparable to the results of Weilbeer
(2001). Although the turbulence model and numerical parameters are identical,
a different advection method was adopted. In order to reduce the numerical
diffusion SUPG (Streamline-Upwind Petrov/Galerkin) method was used in the
present case. Fig. 3.20 shows the flow at a depth of 30cm. The horseshoe vortex

at the pile and its effect on the near-bed velocities are clearly evident in Fig. 3.21.
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Figure 3.19: Flow-induced scour in the experiments of Roulund et al. (2005)

This leads to a flow which opposes the approaching flow upstream of the cylinder.
As a consequence, high sediment transport takes place in this region. This is
primarily directed away from the pile and leads to fast development of the scour
hole. The amplification of the shear stress caused by flow contraction is shown in
Fig. 3.22. In the present the amplified shear stress is about eight times the shear

stress in the undisturbed flow.

As already discussed in Chapter 2.2.5, an existing scour hole has an influence
on the direction of sediment transport. The change in direction in a scour hole is
shown in Fig. 3.23. Due to the action of gravity, sediment transport is less radial
and more tangential at the pile. The result of the simulation after two hours
is a scour hole with a round shape (Fig. 3.24) resembling the shape observed
in the presented laboratory experiment (Fig. 3.19). The scour depth is slightly
overestimated by the model. The temporal evolution (Fig. 3.25) of the scour
hole shows that the dynamics of the process are not exactly modelled especially
during the initial phase and that the equilibrium depth is attained later than in

the laboratory experiment.
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Figure 3.20: Flow around the cylinder at d = 0.3m
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Figure 3.21: Horseshoe vortex (left) and shear velocities (right) in the numerical

simulation
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Figure 3.22: Shear stress amplification factor around the cylinder

Figure 3.23: Influence of slope on the direction of sediment transport
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3.1 Flow-induced scour
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Figure 3.24: Simulated scour after two hours
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Figure 3.25: Temporal evolution of simulated scour
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3.2 Wave-induced scour

The flow around a cylinder that is exposed to an oscillatory flow may be cha-
racterised by a dimensionless parameter, namely the Keulegan-Carpenter (KC)
number (Eq. 3.3). In this equation U, is the maximum near bed velocity, T,
is the period of the oscillatory flow and D is the diameter of the pile. The KC
number describes the ratio of the motion of water particles to the diameter of the
cylinder. Small KC numbers thus indicate that the motion of water particles is
small compared to the diameter of the pile. Flow separation does not occur for

very small KC numbers.

Large KC numbers on the other hand indicate a distinct motion of particles
with flow separation and the possible occurence of vortex shedding. If the flow
period is long enough, a vortex system similar to the steady flow case (see Chapter
3.1.2) developes at the pile for a maximum of half a flow period. The flow and
vortex shedding regimes to be expected for different KC numbers may be found
in Sumer and Fredsge (1997).

Um T’UJ
D

KC = (3.3)

3.2.1 Waves with KC numbers < 6

The first example of the numerical modelling of wave-induced scour is based on
experiments by Sumer and Fredsge (2001a) carried out in a 10.6m wide and 8m
long wave flume (Fig. 3.26). A cylinder of 1m diameter was placed in a sand pit.
The median diameter of the sediment grains was 0.2mm. Waves of different length
and height were used in the experiments. The KC number was in the range of 0.08
to 0.61 for the scour experiments and 0.34 to 1.1 for the rigid bed experiments.
The velocities from the numerical model were verified by a rigid bed experiment
with a KC number = 1.1 (Fig. 3.27). The velocities were measured at a distance
of 10cm from the cylinder surface. A scour simulation was carried out with a KC
number of 0.61, which represents the highest available value of the KC number
for which scour measurements were made. Because the sediment transport rates

and hence the bottom evolution were very small, it was possible to repeatedly use
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Figure 3.26: Wave channel for experiments with KC < 6 (Sumer and Fredsge,
2001a)

the flow results of one wave over twenty minutes of sediment transport simulation.

The overall simulation lasted ten hours.

The results of the numerical experiment for the verifying of the velocities are
shown in Fig. 3.28. The magnitude of the tangential velocity as well as the phase
are in good agreement with the measured results. Considering the radial velocity
values, a small deviation is evident, especially during the first half of the wave
period. This is apparently due to reflections in the simulated wave channel, which
were mainly absorbed in the laboratory channel. As predicted, no horseshoe
vortex was formed. The wave-induced flow is contracted along the sides of the
cylinder, which leads to higher velocities in this region. The resulting sediment
transport, is still very small, however, owing to the overall low velocities and the
absence of a horseshoe vortex. The sediment transport rate equation of Cheng
was therefore used in this experiment, as Cheng’s equation permits a calculation

of transport rates even when only a very small shear stress is present at the
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Figure 3.27: Measured velocities (Sumer and Fredsge, 2001a)
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Figure 3.28: Simulated velocities

bed. Figure 3.30 shows the resulting scour profile after a simulation of ten hours.
Although the scour depth closely agrees with the results from the laboratory
experiment, the scour hole profile is slightly different. Although the scour hole
is located downstream of the cylinder, it has a different radial extension. This
is presumably due to the increasing coarseness of the spatial discretisation with

increasing distance from the cylinder.
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Figure 3.29: Measured scour profile (Sumer and Fredsge, 2001a)
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Figure 3.30: Simulated scour profile
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3.2 Wave-induced scour

3.2.2 Waves with KC numbers > 6

Assuming that the verification of the flow model for waves carried out in Chapter
3.2.1 is also valid for experiments with a much larger KC number, the following
wave scour simulation based on the experiments of Sumer et al. (1992) was per-
formed. In contrast to the previous experiments, a horseshoe vortex is expected

over a certain time period during a half wave cycle for a KC number > 6.

The 10cm diameter pile used in this experiment was placed in 28m long and 4m
wide wave flume. Waves with different KC numbers were used in the experiments.
Wave scour for a KC number of 24 and a pile diameter of 10cm was simulated by
the numerical model and the results were compared to the measurements of Sumer
et al. (1992). The median diameter of the sediment grains was 0.18mm. The flow
results for a single wave were repeatedly used to calculate sediment transport
over a period of one minute. The flow over the scoured bed was subsequently

recalculated.

Waves with a KC number > 6 produce a horseshoe vortex (Sumer and Fredsge,
2002) around the structure similar to the vortex obtained for a steady current.
This behaviour is correctly reproduced by the numerical model (Fig. 3.31). As
shown by the results, the vortex is present for less than half of the wave period.
Because sediment transport rates increase with the developing horseshoe vortex,
the shape of the scour hole is more similar to that given by experiments with a
steady current than the shape obtained for a small KC numbers (KC<6). The
transport rate equation of van Rijn was applied in this experiment, whereby one

wave was used for one minute of sediment transport.

Unfortunately, this experiment provides no information concerning the temporal
evolution and shape of the scour hole. Only the final scour hole depth is known.
The non-dimensional equilibrium scour depth (S/D) in the laboratory experiment
was 0.31 for the given KC number of 24, whereas a scour depth of 0.32 was attained

in the numerical simulation.
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Figure 3.31: Resulting bottom velocities (left) and wave position (right)




3.2 Wave-induced scour

Figure 3.32: Resulting scour shape

3.2.3 Large Wave Channel experiments

In 2006 and 2007 large-scale wave scour experiments were carried out in the Large
Wave Channel (GWK) of the Coastal Research Centre (FZK) in Hanover, Ger-
many. This wave flume is 307m long, 7m deep and 5m wide. The diameter of
the pile used in the investigation was 0.55m (see Figs. 3.33 and 3.34). Because
the model scale is 1:10, scale effects regarding the wave-induced flow and fine
sands are minimized (Griine et al., 2006). The median diameter of the sediment
grains used in the experiment was 0.33mm. Irregular waves were used in order to
simulate scour development in a natural environment. The lengths and heights
of the waves were determined from the Jonswap (Joint North Sea Wave Project)
spectrum, which was derived from wave measurements in the North Sea in 1968
and 1969. The spectrum was represented by 500 waves generated by a wavemaker.
By repeating this spectrum twelve times, a total number of 6000 waves were gen-
erated for test series 2 and 3. In test series 1 and 4 the total number of waves

was 9000 and 6500, respectively. The tests were carried out using four different

93



3 Numerical experiments and model validation

Cantdner | confang 1V Conlanery
11 v?‘ﬂﬂ W proposed monopile W W

a00m
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Figure 3.34: Large Wave Channel: position of pile

spectrum parameters (see Table 3.1).

Velocities and free surface levels were measured near the bottom in an undis-
turbed area close to the pile. In Table 3.1 d is the water depth, dg the bottom
height, H, the significant wave height and 7}, the wave peak period. The
results shown in Table 3.2 represent the measured data. These were calculated
for a full spectrum (i.e. 500 waves) and afterwards averaged for the complete test
series (i.e. 9000/6000/6500 waves). H,q, is the maximum wave height, Hy 3 is
the significant wave height (i.e. the average of 33% of the highest waves) and H,,

is the mean value of all wave heights. Analogous to the wave heights v,,,,, is the
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3.2 Wave-induced scour

No d[m] dsp[m] Hg[m] Tp[s]
1 4.15 2.0 0.75 5.04
2 4.15 2.0 0.80 6.66
3 4.15 2.0 0.90 7.60
4 4.15 2.0 1.00 8.60

Table 3.1: GWK scour test parameters

maximum measured velocity, vy, is the mean velocity, vy/3 is the average velocity

of 33% of the highest velocities and T}, is the measured peak period.

No || Hmax[m] | Hijro[m] | Hiys[m] | Hin[m] | vmax[m/s] | vijs[m/s] | vm[m/s] | Ti[s] | Tpls]
1 1.53 1.12 0.85 | 0.57 1.31 0.82 0.53 | 4.58 | 5.14
2 1.74 1.36 1.03 | 0.64 1.85 1.04 0.67 | 5.61 | 6.59
3 1.7 1.48 121 | 0.77 1.89 1.21 0.75 | 6.47 | 7.68
4 2.2 1.76 14 0.9 2.4 1.44 0.9 | 7.63 |8.94

Table 3.2: Results of the GWK scour tests

Figs. 3.35 to 3.40 show the results of test series 3 after 3000 waves. The scour
hole attains a depth of approximately 26cm and the deepest part is located down-
stream of the pile. The scour depth after 6000 waves was 25¢cm. The deepest scour
was measured in test series 4, whereby the equilibrium scour depth attained 34cm
after 6500 waves (Oumeraci et al., 2007). In test series 2 and 3 the equilibrium

scour depth was already attained after approximately 3000 waves.
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Figure 3.35: Test series 3: scour after 3000 waves (plan view)
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Figure 3.36: Test series 3: scour after 3000 waves (zoom)
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Figure 3.37: Test series 3: scour after 3000 waves (downstream)
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Figure 3.38: Test series 3: scour after 3000 waves (upstream)
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Figure 3.39: Test series 3: scour after 3000 waves (side view)
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Figure 3.40: Test series 3: scour after 3000 waves (side view)



3.2 Wave-induced scour

Only a part of the full channel length was used in the numerical model in order
to reduce computation time. The wave inlet was positioned 10m in front of the
pile and the boundary conditions for the numerical model were as followed: the
three-dimensional velocity field and water depth were prescribed, whereas the
dynamic pressure was unconstrained at the wave inlet. According to Sumer et al.
(1999) the wave parameters for a regular wave which are representative for a wave
spectrum may be approximated by H = HS/\/§ and T' =T, where T} is the zero
upcrossing period and H, is the significant wave height. Tests showed that in
the considered case this approximation leads to an underestimation of the scour
depth. The wave height /3 and the peak period T, were therefore used for
defining a representative wave. The flow results for one wave were used for two
hundred waves of sediment transport simulation. The total number of couplings
between flow and sediment transport was hence thirty. The sediment transport

rate was calculated using the equation of Engelund and Fredsge.

The results of the numerical experiments for test series three are shown in Figs.
3.41-3.44. The first tests were carried out with the sediment ramp included in the
numerical model. The results show that the waves become steeper and shorter
when passing the ramp. As this shape is not stable, the waves return to their
original shape once the ramp has been passed. Although this effect is not totally
through at the pile, it is included in the measurements of 7),. The results of
the numerical simulations show that the difference in shear stress is small when
the ramp is included in the numerical simulation. In view of this, the ramp was

neglected in the scour calculations.

The results of the scour simulation are shown in Figs. 3.43 and 3.44. The
shape of the scour hole differs significantly from the shape obtained in the flume
experiments. This could be due to the fact that a regular wave was used instead
of a wave spectrum. The deepest point of the scour hole is located along the
side of the pile rather than downstream. This is where the highest shear stresses
occur in the numerical model. The temporal evolution progresses very rapidly for
the first three hundred waves and then slows down. This may be caused to some
extent by the arrival of sediment from upstream of the pile. This may also be the
reason for the decreasing scour rate in the temporal range of five hundred waves.

The coupling period might also have an influence on this model behaviour. The
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Figure 3.41: Simulated wave series

scour depth after 3000 waves is underestimated, presumably because the wave
parameters are derived from spectrum parameters and the resulting wave is not
intense enough to produce the a representative sediment transport obtained in the

flume experiments.
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Figure 3.42: Simulated wave series (side view)
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Figure 3.44: Temporal evolution of scour in the numerical simulation
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3.3 Stability analysis of a scour hole

Modelling the bottom by means of a finite element model provides an opportunity
to examine the response of the model to changing geometry as well as to the shear
stresses affecting the surface layer. The developing scour leads to steep slopes
which become unstable when the angle of repose is reached. This behaviour may be
simulated with the aid of the finite element model, thereby permitting an analysis
of the location and depth of instabilities. The bottom surface geometry exists as a
mesh of triangles. In order to obtain a three-dimensional mesh, a horizontal layer
of triangles with the same element coordinates as the surface layer is created. This
layer is located beneath the lowest surface mesh point at about 20% of the height
of the latter. The space between the two layers is filled with a constant number
of wedge elements in the vertical direction. The finite element model of the soil
has different degrees of freedom at the boundaries. Whereas no displacements are
permitted over the bottom layer, the surrounding boundary faces cylinder nodes
are allowed to move in the vertical direction. Simulations with the finite element

model of the soil were carried out in order to analyse slope stability.

3.3.1 Flow-induced instability

The parameters used in the simulations were Young’s modulus £ = 1-10°kN/m?
and Poisson’s ratio v = 0.3. The unit weight of the material was given as v =
13kN/m3. As, according to Krantz (1991); Schellart (2000), a small amount of
cohesion is present even for granular materials, a cohesion factor of ¢ = 0.5k N/m?
was assumed. The depth of the scour hole after one hour of sediment transport
was found to be 12.5cm. The finite element simulations were carried out from
this point in time. The plastic strains p,, are shown in Fig. 3.45. As a result
of experiments by Roulund et al. (2005), sand slides were found to occur when
the slope angle was two degrees greater than the friction angle. Figure 3.46 shows
that for a difference of two degrees between the slope and the friction angle, strong
plastic strains occur on the upstream as well as on the downstream slope when
the actual slope angle exceeds the friction angle. As the solution algorithm does

not converge under these conditions, this is expected to be the regions where most
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Figure 3.45: Plastic deformations for g = ¢

of the sand sliding takes place. As illustrated by Fig. 3.47, the intensity of the
deformations is considerably less if the friction angle is two degrees lower than the
actual slope angle. In this case the model converges and regains a stable condition

even though plastic deformations occur.
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Figure 3.46: Plastic deformations for g = ¢ 4 2°
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Figure 3.47: Plastic deformations for g = ¢ — 2°
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Figure 3.48: Displacement vectors
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4 Conclusions

A three-dimensional flow model capable of simulating flows with and without a
free surface was coupled with a model of sediment transport, bottom evolution
and soil stability analysis. The flow model presented is capable of simulating a
steady flow or a propagating wave for the purpose of calculating the flow field in
the vicinity of a structure. The solver is based on the Reynold’s averaged Navier-
Stokes equations whereas closure of the set of equations is achieved by means of
the k-w turbulence model. The model was validated using experimental data for
steady flows and for a propagating wave passing a vertical cylinder. In the case of
a propagating wave the boundary conditions were calculated by first order wave
theory or by stream function theory. The latter implements a numerical scheme
for calculating wave properties such as the free surface and orbital velocities for
any required order. By this means it is possible to prescribe highly nonlinear

waves at the open model boundary.

The free surface scheme was found to be highly applicable to steady flows and
propagating waves. The results obtained for the free surface, however, depend very
much on the quality of the velocity field. Depending on the advection scheme used,
small instabilities in the velocity field result in discontinuities at the free surface.
The use of the method of characteristics as an advection scheme yielded results
which led to a stable calculation of the free surface without anomalies. The fact
that the vortex system at the cylinder was also sufficiently resolved meant that the
calculated shear stress at the bottom was suitable for application in the sediment
transport model.

Using the shear stress at the bottom computed by the flow model, a sediment
transport rate may be calculated and subsequently inserted in the bottom evo-
lution equation. The quality of the results of this model is highly dependent on

the equations used for calculating the sediment transport rate. This is especially
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the case when simulating scour, as this is an extreme case with regard to shear
stress and hence bottom evolution. Good results were obtained using the sedi-
ment transport rate equation of Cheng for the case of small shear stresses caused
by short waves. In the case of high shear stresses the equation of Engelund and

Fredsge was found to be more suitable.

The simulation of sliding sediment is necessary in order to realistically model
the bottom geometry. Adjustments for the inception of motion and the sediment
transport rate at slopes improve the original equations in such a way that sand
sliding is less intensive with regard to the number of iterations required, even
though it is still necessary. The resulting scour geometry is therefore also charac-

terized by this algorithm, which depends on one soil parameter.

The coupling of flow and sediment transport was carried out by using a repre-
sentative period of flow results for several sediment transport computations. The
period and number of re-used flow results were determined manually in order
to control the number of required couplings. The former were chosen so as to
minimise the bottom evolution during each coupling period prior to the next flow
calculation. Computation time, on the other hand, was a limiting factor regarding

the number of realisable couplings.

The sediment transport model was enhanced by a finite element model in order
to analyse bottom stability. The horizontal mesh was extended in the vertical
direction to form a three-dimensional mesh consisting of wedge elements. A linear-
elastic solver was combined with a failure criterion and a visco-plastic method in
order to calculate non-linear deformations. Several soil parameters as well as the
bottom geomtetry are taken into account in this model in order to determine soil
stability. By this means it is possible to locate zones of total failure more precisely
than would otherwise be possible basd on a comparison between the actual slope

angle and the friction angle.

The described model was used to simulate different laboratory experiments on
flow and wave-induced scour. Simulations were carried out for a vertical cylinder
and an abutment in a steady flow, whereby the results of experiments on short
and long waves were used to validate the model. Furthermore, the scour resulting

from a wave spectrum was used as a test case for the numerical model.
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Simulations involving short waves indicate that no horseshoe vortex is formed at
a vertical pile for a Keulegan-Carpenter (KC) number of less than six. Sediment
transport in the proximity of the structure in this case is solely dependent on wave-
induced near-bed velocities. This leads to comparatively small transport rates. In
this case the best results were obtained using a transport rate equation that was
not developed on the assumption of a critical shear stress for the inception of
particle motion. The applied transport model permits the calculation of small
transport rates even when the shear stress is very small. The results show good

agreement with measurements with regard to both scour depth and shape.

When a long wave with a KC number greater than six passes a pile, the wave-
induced flow is intense enough to produce a horseshoe vortex system. This leads
to a situation which is comparable to steady flow conditions present for less than
the length of the trough or crest. As sediment transport is dominated by this flow
effect, the scour shape is more similar to the scour shape produced by a steady

flow than by a wave with a KC number less than six.

The flow-induced scour simulations indicate that the sediment transport rate
equation has a significant influence on the results. This is very obvious from the
results of the abutment scour. Using the equation of Meyer-Peter and Miiller led to
good agreement with measurements regarding the final scour shape, whereas the
equation of Engelund and Fredsge resulted in an equilibrium scour depth similar
to that observed in laboratory experiments. Although the scour depth was slightly
overestimated for the case of a cylinder in a steady flow, the computed shape of

the scour hole matched the measurements fairly well.

The bottom geometry of a flow-induced scour hole was used for analysing soil
stability. The zones of erosion are then indicated by regions where strong plastic
deformations occur. In the case of total failure the solution algorithm fails to
converge as no stable condition can be found. Comparing the calculated erosion
zones with the criterion of the sand-slide algorithm shows that the results of the
two approaches differ with regard to the areas affected. Although the finite ele-
ment stability model is assumed to be more accurate regarding the determination
of erosion zones, the fact that it is three-dimensional places a high burden on
computation time. In addition, the need for more model parameters than just the

friction angle cannot always be fulfilled. Consequently, the assumption of missing
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parameters has an artificial influence on the results.

The results of the presented numerical simulations of flow and wave-induced
scour were found to be in good agreement with laboratory experiments. Further
improvement of the results could be achieved by increasing number of couplings
between flow simulations and sediment transport computations in order to take
account of the changes in the bed geometry more frequently. The use of a finite
element model of the soil as a criterion for erosion and sand-slides seems to be

appropriate, especially if the influence of pressure is also taken into account.
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A Wave theories

An oscillatory flow, such as the flow caused by a propagating wave, may be de-
scribed by means of different complex mathematical theories. Although the linear
or Airy wave theory is used very extensively, it does have limitations when it comes
to shallow water or deep water, or waves with high steepness. Nevertheless, the
simplicity and explicitness of the theory is an advantage over more complex the-
ories such as the cnoidal wave theory of Korteweg and De Vries (1895) or stream
function theory (Dean, 1965). Although the latter must be evaluated with the aid
of a numerical scheme, which is a drawback in terms of simplicity, it is nevertheless

very versatile, as will be shown in Chapter A.2.

A.1 Linear wave theory

Waves are described by several parameters. The main parameters are the length
and height of the wave and the water depth in which the wave is propagating.
Other parameters such as wave-induced velocities and dynamic pressure may be
derived from the above-mentioned quantities. Figure A.1 shows the scheme of a
propagating wave. The length of a wave is defined by the distance between two
crests or troughs, respectively. The wave height is denoted by H and the water
depth by h. n(z,t) describes the position of the free surface in space and time.
The shape of the illustrated wave is derived from linear wave theory and therefore
takes the form of a sinusoidal oscillation (Eq. A.8). By placing the origin of the

coordinate system at the still water level, the bottom is denoted by z = —h.

The basic assumptions in linear wave theory are that the flow is inviscid, the
amplitude is small relative to the water depth, and the flow field is irrotational.

No shear stress can be generated in the flow itself but only in the proximity of a
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<V

Figure A.1: Wave parameters

bottom boundary. In shallow water the wave motion may extend to the bottom,
thereby generating a small boundary layer with rotational flow. Because this layer
is very thin and its influence on wave motion is very slight, it is neglected in the
equation of motion. The solution of the flow and pressure field is given by the

potential function (Eq. A.1) where ¢ is the velocity potential.
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A difficulty that arises in the application of linear wave theory concerns the
imposition of boundary conditions. These may be expressed in the form of three
equations. In accordance with Fig. A.1, n is the perturbation from the mean water
level. The kinematic boundary condition states that a fluid particle at the free
surface remainsat this location (Eq. A.2). Using the velocity potential instead of

velocities leads to Eq. A.3.
—— —u—+w=0 (A.2)
on 960 _ 9%

ot Oxrdr 0Oz

The second boundary condition states that the pressure at the free surface is

at z=mn (A.3)

constant. This is referred to as the dynamic boundary condition. Applying the
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Figure A.2: Wave theories and their application range (Komar, 1998)

Bernoulli equation leads to

9¢

ot + + V(b Vo +gn=F(t) (A.4)

where p is the pressure at z = 71 and p is the fluid density. Prescribing zero flux
at the bottom boundary (Eq. A.5) then results in

9¢
0z

By combining Eq. A.1 with the boundary conditions given by Eqgs. A.2-A.5,

=0 at z=-h (A.5)

Stokes assumed that the solution of the final equation could be expressed by a

Fourier series. Linear (Airy) wave theory uses only the first term of this series,
which leads to Eq. A.6.

gH cosh k(z + h)

oz, 2,t) = 2w cosh kh

cos(kx — wt) (A.6)

In the following equations # = (kx — wt) describes the phase angle, i.e. the

position in space and time where the equations are evaluated. Here, k = 27/L is
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the wave number. The angular frequency may be calculated from the dispersion
relationship, which describes the relationship between the wave period 7" and the

wave length L.

w? = gk tanh(kh) (A.7)
The free surface takes the form:

H
n= 50059 (A.8)

The velocities and pressures in the vertical and horizontal direction (Eqs. A.9
and A.10) are derived from the flow potential function (Eq. A.6). The velocity

perpendicular to the x-z plane ist constantly zero.

_ wH cosh(k(z +d))

=T sinh(kd) % (A.9)

_ wH sinh(k(z +d)) .

=T sinh(kd) sinf (A.10)
P=ry (nwscho(jg(zk;)d) I 2) (A.11)

In linear wave theory it is assumed that the boundary conditions are fulfilled
at the still water level. The equations resulting from this theory are not valid for
positive values of z. Taking this into account, Chakrabarti (1971) developed an
expression (Eq. A.12) for the pressure distribution which solves the problem and
fulfills the dynamic boundary condition at the free surface. Unfortunately, the

Laplace equation is no longer fulfilled at every wave position.

cosh(k(z + d))
mod — - A12
Prmod = P9 (ncosh(k:(d+77)) : ( )
Modern measurement techniques provide a more precise knowledge of wave
particle velocities. Wheeler (1970) found a similar expression (Eq. A.13) to adapt
particle velocities to measured values. In the so-called “stretching method” an

additional term is introduced for horizontal velocities. Although the boundary
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conditions at the free surface are no longer fulfilled, they are still valid at the
bottom. Using this stretching method also for vertical velocities again leads to a

situation where the Laplace equation is not fulfilled at every wave position.

nH cosh (k;(z + d)ﬁ‘%)

mod — : 0 A.13
Hmod = 7 sinh(kd) o3 ( )
A.2 Stream function theory
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Figure A.3: Best fit for the free surface (Komar, 1998)

Using Airy wave theory to describe an initial wave in a channel is quite conve-
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nient owing to its explicit character and easily comprehensible formulation. Un-
fortunately, the theory is only valid when dealing with small amplitude waves such
as those described in Chapters 3.2.1 and 3.2.2. For waves in very shallow or deep
water or for waves with a high steepness, the application of other theories is more
appropriate. The reason for this is the poor fit of the dynamic free surface bounda-
ry conditions of the Airy theory in such cases (Fig. A.3). As a consequence of the
latter, the calculated waves are unstable. In the case of shallow water the cnoidal
theory (Korteweg and De Vries, 1895) and the solitary wave theory (Boussinesq,
1872) yield good results for wave kinematics, whereas in deep water Stokes’ theory

of higher order proves to be more applicable (Figs. A.2 and A.3).

Extending the above-mentioned theories to a higher order becomes quite difficult
and inconvenient. The stream function wave theory developed by Dean (1965)
overcomes these problems. The underlying equations of this theory, which may
be evaluated numerically to any required order, may be represented by a scalar

function which is easy to handle and permits a calculation of the velocity vector
field.

Eqgs. A.14 and A.15 represent the linear form of the velocity potential and
the stream function, respectively. The velocity field may be determined from the
potential ¥ of an irrotational and incompressible flow. A stream function exists for
all two-dimensional flows (Dean and Dalrymple, 1984). These functions describe

the flow rate in the longitudinal and transverse direction, respectively.

H g cosh k(h+ z)

oz, z,t) = 5o b kh sin(kx — wt) (A.14)
H g sinh k(h + 2)
__ZgsmmhTe) _ Al
W(z, 2, t) 5 ook kB cos(kx — wt) (A.15)

The fact that the isolines of constant velocity potential and constant stream
function are orthogonal means that the product of the gradients of both functions

is zero:

V-V =0 (A.16)

This is also evident from Eqs. A.14 and A.15, which have a phase shift of 7 /2.
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With regard to velocities, the stream function and the velocity potential are
related by

y = 90 _ W
ozr 0z (A17)

N0 o

0z Oz

In order to obtain an expression for the stream function which is not time
dependent, the coordinate system is moved with the wave celerity C' = L/T. This
implies that the wave form travels without a change of shape (Dean, 1965). The

steady version of the stream function is therefore

H gsinh k(h + 2)
=Cz— —>———F—cos k Al
¥lz,2) T 2w coshkh 0 (A.18)

The boundary conditions for the stream function are basically the same as those
of the Airy wave theory. Firstly, the Laplace equation must be fulfilled throughout
the fluid (Eq. A.19).

Vi) =0 (A.19)

Neglecting the pressure at the free surface, and without time dependency, the

dynamic free surface boundary condition is

(3 ()

where ()p is the Bernoulli constant.

+gn=Qp (A.20)

The kinematic free surface boundary condition states that the motion of the
water surface must be consistent with the velocities of the water particles at the
free surface (cf. Eq. A.3). Again without the time dependency the boundary

condition may be written as

o _ oY oy
or 0z Ox (4.21)

As no flux is permitted through the bottom boundary, the following holds:
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% _

Ee 0 at z=-—h (A.22)

Besides the boundary conditions, a representation of the stream function which
permits an evaluation of any order is required. The generalized form of the stream

function of N** order in a steady rendered coordinate system takes the form

Y(x,2) =Cz — Z X (n)sinh {nk(h + 2)} cos nkz (A.23)

In order to obtain the first order solution (cf. Eq. A.15) the coefficient X (1) is

Hg 1
2w cosh kh

X(1) = (A.24)

The kinematic boundary condition is fulfilled by default when applying stream
function theory, as it states that the free surface must be a streamline. In order to
also fulfil the dynamic boundary condition, the X(n) coefficients must be chosen in
such a way as to ensure that this condition is satisfied. This is achieved numerically
by splitting the free surface of the wave into I discrete points. The dynamic
boundary condition is then evaluated at each point I, thereby yielding a local
value of the Bernoulli constant @), (Eq. A.25) which must be equal to the global

constant ()p.

In order to calculate the values of @p,, the X (n) coefficients must be known.
Otherwise the velocities and the free surface in Eq. A.25 can not be determined.
This results in an iterative procedure in which the X (n) coefficients and the Qp,

constants are calculated alternately until the boundary condition is satisfied.

A AN
(&)ﬁ(a—x)

5 L+ gni=Qp (A.25)

QBi =

With each iteration the boundary condition error decreases. For an exact so-
lution this error would be zero. In the present solution scheme the iteration is
repeated until the error is sufficiently small. A measure for the error is £ which

is described by
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2 L/2 )
E, = f/ (@B, —Qp)" dx (A.26)
0
where
9 L2
Qp = I Qp, dx (A.27)
0

The coefficients resulting from the iterative procedure must lead to a zero mean

of the free surface n(z):
L/2
(2/L) / n(z)de =0 (A.28)
0

In order to describe the boundary conditions in a numerical model using the
results of stream function theory, the length of the wave L and the value of the
stream function ¢(z,7n) must be determined. As described by Dean and Dal-
rymple (1984), this is achieved by applying the method of Lagrange multipliers
(Hildebrand, 1965). The objective function

2)\1 L/2

0= 2 [ war o (2) ] oo

in which A; and A\, are the Lagrange multipliers, must be minimized. This is
a nonlinear equation which is solved by expanding the equation with a truncated

Taylor series:
N+2 a Vi

o =0}y % (; )AXj (n) (A.30)
n=1

The value of AX7(n) represents a slight correction of X7(n) in the j iteration
step. Minimizing the expanded objective function leads to a set of linear equations
which may be solved using a suitable linear equation solver. Taking the correction

of AX7(n) into account in the next iterative step leads to
X7t (n) = X7 (n) + AX?(n) (A.31)

This procedure is repeated until the result of the objective function O}H is suffi-

ciently small.
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Greek

I} Actual bottom slope
n Free surface position
v Unit weight

Vi Shear strains

v Viscosity

UVp Poisson’s ratio

vy Turbulent viscosity
w Turbulent dissipation
10) Critical slope angle

p Density

o Normal stress

o Stress

e Bottom shear stress
Ter  Critical bed shear stress
Tij Shear stress

0 Shields parameter
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0., Critical Shields parameter

€ Turbulent dissipation

€ Extensional strains
Latin
c Cohesion

D, Sediment grain parameter
Ay Sediment mean diameter
dso  Median grain diameter

E Young’s modulus

G Shear modulus

g Gravity

h Water depth

H,  Significant wave height

Hyss  Average of 33% of the highest waves
H,,.. Maximum wave height

k Turbulent kinetic energy

ks Effective grain roughness
KC Keulegan-Carpenter number
L Wave length

N; Shape function

P Pressure

qs Sediment flux
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Hos s T

N

V1/3

Umaz

Free surface

Sediment grain size

Wave period

Time

Wave peak period

Wave period

Zero upcrossing wave period
Flow velocity

Shear velocity

Sediment particle velocity
Displacement vector

Near bed velocity

Average of 33% of the highest velocities
Maximum velocity

Weighting function
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