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ZusammenfassungEin dreidimensionales, numeris
hes Strömungsmodell wurde mit einem Sedi-menttransport und einem Modell zur Analyse der Bodenstabilität gekoppelt. DasStrömungsmodell ist in der Lage Bere
hnungen mit und ohne freier Ober�ä
hedur
hzuführen, wodur
h stationäre Strömungen wie au
h propagierende Wellenund die daraus resultierende Strömung im Nahberei
h eines Bauwerks simuliertwerden kann. Das Modell basiert auf den Reynold's gemittelten Navier-StokesGlei
hungen, wobei die S
hlieÿung des Glei
hungssystems mit dem k-ω(SST) Mo-dell dur
hgeführt wurde.Die vom Strömungsmodell bere
hneten S
hubspannungen am Boden werdenan das Sedimenttransportmodell übergeben und mit diesen die Bodenevolutions-glei
hung gelöst. Die Geometrie des si
h verändernden Bodens wird na
h einer fest-gelegten Dauer an das Strömungsmodell zurü
kgegeben, worauf eine Aktualisie-rung der Strömungsergebnisse dur
hgeführt wird. Da si
h bei der Umströmung vonBauwerken lokal erhöhte S
hubspannungen ergeben, führt dies zu einem intensivenSedimenttransport und zur Bildung eines Kolkes. Die auftretenden steilen Boden-gradienten werden in den Glei
hungen zur Bere
hnung der Sedimentransportratedur
h zusätzli
he Ansätze berü
ksi
htigt. Eventuell auftretende Sedimentruts
h-ungen werden dur
h einen Algorithmus simuliert, der Sediment in Ri
htung desGefälles umlagert, falls der Neigungswinkel des Bodens den Reibungswinkel über-steigt.Das Sedimenttransportmodell wurde um ein Finite-Elemente Bodenmodell er-weitert, das in der Lage ist, eine Stabilitätsanalyse des Bodens bei Einwirkung desEigengewi
hts und äuÿerer Lasten dur
hzuführen. Dadur
h können die Berei
hebestimmt werden, an denen Sediment- bzw. Hangruts
hungen auftreten. Hierbeiwerden mehrere Bodenparameter in die Analyse sowie die Geometrie des Bodensmit einbezogen.Das bes
hriebene Modell wurde auf vers
hiedene Laborversu
he mit strömungs-und welleninduziertem Kolk angewendet. Neben einem Zylinder und einem senk-re
hten Wandeinbau in einer stationären Strömung, wurden au
h Versu
he mitkurzen Wellen (KC<6) sowie langen Wellen (KC>6) zur Validierung des Modellsherangezogen. Weiterhin wurde ein aus einem Wellenspektrum entstandener Kolkim numeris
hen Modell na
hgebildet.
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Abstra
tA three-dimensional �ow model 
apable of simulation �ows with or withoutfree surfa
e was 
oupled with a model 
apable of simulating sediment transportand bottom evolution, and a model for analysing soil stability. The �ow modelpresented is 
apable of simulating a steady �ow or a propagating wave in orderto 
al
ulate the �ow �eld in the proximity of a stru
ture. The solver is based onthe Reynold's averaged Navier-Stokes equations, whereas the 
losure of the set ofequations is a
hieved by means of the k-ω(SST) turbulen
e model.Using the shear stress at the bottom 
omputed by the �ow model, a sedimenttransport rate may be 
al
ulated and subsequently inserted in the bottom evo-lution equation. This leads to an intense sediment transport and thus to s
our.Steep slopes will lead to sliding sediment grains when the a
tual slope angle ex-
eeds the fri
tion angle of the sediment. In order to keep the bottom geometry in areasonable shape, an algorithm is used to simulate sliding sediments. Adjustmentsfor the in
eption of motion and the sediment transport rate at slopes improve theoriginal equations in su
h a way that sand sliding is less intensive with regard tothe number of iterations rquired, even though it is still ne
essary. The resultings
our geometry is therefore also 
hara
terized by this algorithm, whi
h dependson one soil parameter.A more general model for determining slope stability was developed and 
oupledwith the existing �ow and sediment transport model. The bottom is idealised as athree-dimensional solid body and a �nite element analysis is 
arried out in orderto 
al
ulate the erosion zones under given 
onditions. When determining the slopestability, this approa
h not only takes a

ount of the fri
tion angle but also severalother soil parameters as well as the bottom geometry.The model des
ribed was used to simulate di�erent laboratory experiments of�ow and wave indu
ed s
our. A verti
al 
ylinder and an abutment in steady �ow
onditions were 
onsidered as well as experiments with short waves (KC<6) andlong waves (KC>6) to validate the model. Furthermore, a s
our resulting from awave spe
trum was 
onsidered as test 
ase for the numeri
al model.
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1 Introdu
tion
1.1 MotivationAll stru
tures situated in a maritime- or river-environment are exposed to the �uid�ow that surrounds them. The resulting for
es a
ting on the stru
ture and thesurrounding soil are a result of �ow or wave a
tion, or the 
ombination of both.Additional e�e
ts may in
lude e.g. wave di�ra
tion and re�e
tion, wave breakingor �ow 
ontra
tion. These e�e
ts may result in an in
reased �ow velo
ity in thevi
inity of the stru
ture and hen
e to higher shear stresses a
ting on the soil.Assuming that the soil in most 
ases 
onsists of sediments that are vulnerable toerosion, an in
rease in the �ow will result in in
reased sediment transport andsubsequent s
our. As indi
ated by many examples in the past, this may pose aserious threat to the stability of a stru
ture.In order to gain more knowledge 
on
erning the s
our pro
ess and the issueof soil stability under the in�uen
e of �ow, a 
ombined numeri
al model of �ow,sediment transport and soil stability analysis has been developed. Whereas the�ow and soil model are three-dimensional, sediment transport and bed evolutionis simulated by means of two-dimensional model. The �ow model is based on theReynold's averaged Navier-Stokes equations with a s
heme for 
al
ulating the freesurfa
e. By this means it is possible to analyse a �ow and a wave-indu
ed s
our.Averaging the Navier-Stokes equations leads to the turbulen
e 
losure problem, i.e.the need for additional equations in order to 
lose the set of available equations.This is a
hieved by using a modi�ed version of the k-ω turbulen
e model whi
ho�ers the advantage of simulating boundary-layer �ows with a stagnation pointand adverse pressure gradients.Taking the bottom shear stress 
omputed by the �ow model as input for the1



1 Introdu
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sediment transport model, a time variable bottom topography may be 
al
ulatedby means of the bottom evolution equation. The required transport rates areobtained from (semi-)empiri
al equations based on laboratory experiments. The
onsidered material is sand and the main transport mode is bed-load. The trans-port of suspended sediment is negle
ted in the presented numeri
al investigations.Lo
ally in
reased shear stress in the proximity of a stru
ture leads to higher trans-port rates and thus to more intense erosion. As a 
onsequen
e, a s
our withsteadily in
reasing slopes will develop. On
e a slope has been established, thesediment transport is not only driven by shear stress but also by the for
e of grav-ity, whi
h be
omes more dominant with an in
reasing slope angle. Furthermore,a 
ollapsing slope with sliding sediment will o

ur when the slope angle attainsthe sediment fri
tion angle. As these sediment movements are only driven by thefor
e of gravity, they are not taken into a

ount in the above-mentioned transportrate equations but are treated separately using an algorithm whi
h ensures thatthe slope angle 
annot ex
eed the fri
tion angle. The sediment is otherwise shiftedin the dire
tion of the slope until a stable 
ondition is rea
hed.The slope stability is determined by 
omparing the a
tual slope angle withthe fri
tion angle of the used material 
on
erned. This is a valid assumption forhomogeneous, sandy materials whi
h are preferred in laboratory experiments. Theproperties and distribution of natural soil, however, are far more variable than 
anbe expressed by a single material parameter. For this reason a more general modelfor determining slope stability was developed and 
oupled with the existing �owand sediment transport model. The bottom is idealised as a three-dimensionalsolid body and a �nite element analysis is 
arried out in order to 
al
ulate theerosion zones under given 
onditions. When determining the slope stability, thisapproa
h not only takes a

ount of the fri
tion angle but also several other soilparameters as well as the bottom geometry.The model des
ribed was used to simulate di�erent small and large s
ale 
asesinvestigated in laboratory experiments. This 
overs experiments with a steady�ow as well as 
ases with waves. Most of the presented material is based on smalls
ale 
ases, as large s
ale s
our experiments are rarely available.2



1.2 Literature review
1.2 Literature review1.2.1 Flow modelThe verti
al 
ir
ular 
ylinder is one of the most widely used geometries for stru
-tures in the marine environment whereas river-based buildings are often designedwith an oval 
ross-se
tion. Nevertheless the 
ir
ular 
ylinder remains the 
om-monly 
onsidered 
ross-se
tion in theoreti
al and experimental studies. Flowaround stru
tures is purely three-dimensional even in the 
ase of a verti
al 
ylinderwhere the geometry is 
onstant over the depth. The �ow �eld exhibits di�erente�e
ts depending on the type of �ow approa
hing the stru
ture. The e�e
ts thatmay o

ur su
h as, e.g. a stagnation point, �ow 
ontra
tion and vortex sheddingare not only 
hara
teristi
 for a verti
al pile but also for almost all other possibleobje
ts.Di�erent approa
hes for modelling the �ow around a 
ir
ular 
ylinder may befound in the literature. Reynold's averaged Navier-Stokes equations (RANS) withan adequate 
losure model and large eddy simulations are the most 
ommonlyused. In the 
ase of RANS, turbulen
e modelling may be performed using a twoequation model su
h as the k-ε or the k-ω model. Whereas Olsen and Melaaen(1993) and Olsen and Kjellesvig (1998) applied the �rst method in order to 
al
u-late the �ow for a s
our simulation, the latter method was applied in a modi�edform (Menter, 1992) by Weilbeer (2001) and Roulund et al. (2005) for the samepurpose.Although a large eddy simulation is 
ertainly more a

urate for 
al
ulating�ow than a RANS model, a 
onsiderably longer 
omputation time is required.This makes the method unsuitable for 
al
ulations involving longer periods thanare ne
essary for simulating the s
our pro
ess or for 
al
ulations involving highReynold's numbers. A subgrid s
ale model is ne
essary in order to model theturbulen
e that is not resolved by the mesh. Several of these in
luded in theliterature were studied by Breuer (2000) and Salvati
i and Salvetti (2003). Theseand among others Fröhli
h and Rodi (2004) and Fröhli
h et al. (2003), analysedthe in�uen
e of spatial dis
retization on the results. The advantages of using alarge eddy simulation were demonstrated by Catalano et al. (2003). By 
omparing3



1 Introdu
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the results of the latter with the results obtained from a 
al
ulation using a k-εmodel it was shown that the large eddy simulation 
learly yields better resultsregarding the pressure distribution and the separation points.Yen et al. (2001) made use of the advantages of a large eddy simulation for
al
ulating a s
our. The �ow was only modelled on
e with a horizontal bed and thevelo
ities were then adapted to the 
hanging bottom geometry without performingan LES �ow simulation for updating the �ow. The Reynold's number based onthe pile diameter was only 3900.Although RANS have several disadvantages 
ompared with large eddy simu-lations, they were in fa
t su

esfully used by Salaheldin et al. (2004) with a k-ǫmodel. The resulting velo
ity pro�les were found to be in good agreement withthe measured data while the shear stresses showed small deviations. Nagata et al.(2002) used a nonlinear k-ǫ model in order to 
al
ulate �ow and s
our around a
ylinder. This and the results of Weilbeer and Roulund et al. shows that RANSmay su

esfully be applied to solve three-dimensional �ow and s
our problems,whi
h would otherwise be too time 
onsuming using large eddy simulations.1.2.2 Sediment transportIn a numeri
al model the sediment transport is usually subdivided into near-bottom transport and the transport of material in suspension. They are in
ludedin the general bottom evolution equation. Negle
ting suspended sediment trans-port on the grounds that sandy material (the only material 
onsidered in thepresent work) is predominantly transported at the bottom, the problem redu
esto �nding an adequate des
ription of the bed-load. This may be a
hieved usingone of the numerous equations available for this purpose. The problem may befurther simpli�ed by assuming a uniform sediment, i.e. representation of the sedi-ment parti
le diameters by a single mean diameter. This is a valid assumption asthe experiments presented here were 
arried out in laboratories under well de�ned
onditions with a given uniform sediment.One of the �rst empiri
al expressions for the bed-load transport was obtainedby Meyer-Peter and Müller (1948) from �ume experiments with uniform grains aswell as with mixed grain sizes. The resulting formula is still used very frequently.4



1.2 Literature review
Around the same time Kalinske (1947) and Einstein (1950) developed sto
hasti
approa
hes whi
h take the nature of a turbulent �ow into a

ount when 
al
ulatingthe transport rate. Both equations still require experimental data for 
alibratingthe various parameters (van Rijn, 1993). The formulas of Meyer-Peter and Müllerand Einstein were used by Frijlink (1952) to develope an equation that is a �t ofthe latter formulae and thus yields similar results. Other equations that shouldbe mentioned are the equations of Bagnold (1966), Engelund and Fredsøe (1976)and van Rijn (1984). The latter were implemented in the present work and arepresented in detail in Chapter 2.2.4. Several other more transport rate equationssuitable for simulating sediment transport are also available, e.g Engelund andHansen (1967), Zanke (1982a) and Cheng (2002).Bed slopes are found to dramati
ally in
rease when s
our o

urs. As shown bythe measurements of Smart (1984), this has a signi�
ant in�uen
e on the dire
tionand magnitude of sediment transport. This e�e
t may be taken into a

ountby modifying the transport rate originally 
al
ulated for a horizontal bed. Thetransport rate in the longitudinal dire
tion, i.e. the transport in the dire
tion ofthe shear stress, is �rst adapted and then an additional transport rate is 
al
ulatedin the transvere dire
tion if a slope in this dire
tion exists.Changes in sediment transport rates along slopes were studied by Bagnold(1966), who developed an expression for adapting the transport rate on a horizon-tal bed for sloping bed 
onditions. Hardisty and Whitehouse (1988) found thatthe resulting transport rate underestimates the a
tual transport rate obtainedfrom measurements. A similar approa
h was presented by van Rijn (1993), who
ompared the equation of Smart (1984) with the original formula of Meyer-Peterand Müller and found an expression for a slope fa
tor appli
able to a downwardslope. Although the equation of Bagnold was developed for both an upward anddownward slope, Damgaard et al. (1997) found that upward slope transport is ad-equately des
ribed by taking into a

ount the 
hanging threshold value in upwarddire
tion. Other approa
hes whi
h take a

ount of 
hanging sediment transportrates are given by Ko
h and Flokstra (1981) and Kova
s and Parker (1994).In the 
ase that sediment transport o

urs in the dire
tion of the shear stress, aslope in the transverse dire
tion 
auses additional gravity-indu
ed transport in thedire
tion of the transverse slope. This means that the resulting transport ve
tor is5
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no longer in the dire
tion of the shear stress but slightly in
lined in the dire
tionof the slope. This behaviour was studied by Engelund (1974), Ikeda (1982, 1988)and Talmon et al. (1995). Ikeda developed a formula for 
al
ulating the sedimenttransport rate as a fun
tion of the longitudinal transport rate and the transverseslope. Talmon and Wiesemann (2006) found that the transverse transport rate isdependent on the grain size and presented a formula taking this into a

ount.Sediment parti
les resting on a slope are subje
ted to the a
ting shear stress aswell as the for
e of gravity. The 
omponent of the gravity ve
tor in the dire
tion ofthe slope 
auses an in
rease in the 
riti
al Shields parameter when the shear stressa
ts in the upward dire
tion and a de
rease in the opposite 
ase. A 
oe�
ientfor the Shields parameter whi
h takes a

ount of the latter was �rst presented byS
hoklits
h (1914). Similar expressions have also been derived by Whitehouse andHardisty (1988), Lau and Engel (1999), Luque and Beek (1976), Hasbo (1995) andChiew and Parker (1994).1.2.3 Slope stabilityThe slopes that o

ur when a s
our developes are subje
ted to shear stress, �ow-indu
ed pressure and gravity. Sediment grains begin to slide when the slopesbe
ome too steep, thus resulting in a loss of stability. In the presented numeri
almodel this is taken into a

ount by shifting sediment from higher to lower pointsin the 
omputational mesh. The threshold of sediment sliding is identi�ed by
omparing the a
tual slope angle with the fri
tion angle of the material. Theonly soil parameter used in this 
ontext is hen
e the fri
tion angle, whereas slopestability is governed by additional parameters in
luding the overall slope geometry.Slope stability may be determined in a number of ways whi
h are more orless a

urate depending on the method used. Dun
an (1996) has summarized theestablished methods, whi
h in
lude the ordinary method of sli
es (Fellenius, 1936),the modi�ed method of Bishop (1955), Spen
er's method (1967) and several othermethods based on the assumption that it is appropriate to divide the soil massinto sli
es. Be
ause these methods require an approa
h for estimating the sidefor
es a
ting on ea
h sli
e, the entire solution pro
ess 
ombined with all othersimplifying assumptions leads to un
ertain results. The methods mentioned are6



1.2 Literature review
nevertheless widely used in geote
hni
al engineering partly be
ause of their easeof appli
ation and also due to the fa
t that the method of Bishop, for example,be
ame a 'standard' for slope stability analysis (Gri�ths and Marquez, 2007).Examples demonstrating the implementation of these methods may be found inVerruijt (1995).In order to determine slope stability more a

urately under s
our 
onditions a�nite element model for the soil was implemented in the present investigations.In 
ontrast to the majority of numeri
al simulations 
arried out in geote
hni
alengineering, the analysis in the present 
ase is three-dimensional rather than two-dimensional. The advantages of using a numeri
al model rather than one of thedi�erent methods of sli
es are e.g that the progression of failure 
an be monitoredup to the point of total failure and that no assumptions are ne
essary 
on
erningthe shape or lo
ation of the failure surfa
e. The point of total failure, as givenby the results of the 
al
ulation, o

urs when the soils shear strength is no longerable to sustain the a
ting for
e of gravity (Gri�ths and Lane, 1999). An ad-ditional advantage of a three-dimensional model is the ability to more pre
iselyde�ne the slope geometry. This is espe
ially important in the 
ase of a s
our holewhose slope is normally 
hara
terized by a round shape. In 
ontrast to a two-dimensional model, a three-dimensional approa
h permits the modelling of a truethree-dimensional shape rather than a two-dimensional geometry extended to thethird dimension.The for
e of gravity a
ting on a slope 
auses stresses in the soil whi
h in turnlead to strains. Smaller strains are usually reversible and 
an therefore be de-s
ribed by the theory of linear elasti
ity (Verruijt, 1995; Davis and Selvadurai,1996; Zienkiewi
z and Taylor, 2000). When a slope is 
lose to failure, however,plasti
 deformations o

ur in the soil as a result of irreversible strains. The adop-tion of an elastoplasti
 or vis
oplasti
 approa
h for des
ribing the stress-strain re-lationship o�ers a means of modelling soil behaviour more pre
isely (Zienkiewi
zand Taylor, 2000; Davis and Selvadurai, 2002; Gri�ths and Marquez, 2007). Thisis important in the presented 
ases where high stress levels o

ur and the slopeis not only 
lose to failure but also partially 
ollapses (thereby leading to slidingsediment grains). Early examples of the appli
ation of these te
hniques are givenby Smith and Hobbs (1974) and Zienkiewi
z et al. (1975). In these examples the7
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results were 
ompared with the data of Taylor (1937) and with solutions obtainedfrom the slip 
ir
le theory.A distin
tion between linear and nonlinear deformations is possible using theMohr-Coulomb 
riterion, whi
h is suitable for soils possessing fri
tional and 
o-hesive 
omponents (Smith and Gri�ths, 1998). If the stress at a point in the
omputational mesh due to the a
ting for
e of gravity lies within the range ofthe failure 
riterion then it is assumed that only linear deformations o

ur. Ifthe stress lies outside of the failure 
riterion, on the other hand, the deformationis irreversible and yield has o

urred. The stress in the yielding region is thenredistributed among the neighbouring elements in the mesh by a vis
oplasti
 al-gorithm des
ribed by Perzyna (1966); Zienkiewi
z and Cormeau (1974). Owingto the fa
t that the redistribution of stresses 
an 
ause yield in regions whi
h wereoriginally elasti
, the stress redistribution pro
ess is 
arried out iteratively. Thepro
ess ends when a stable 
ondition is rea
hed and no more plasti
 deformationso

ur.The des
ribed algorithm was �rst implemented in a �nite element model pub-lished by Smith and Gri�ths (1988). The use of a �nite element model for 
al
u-lating slope stability is reported among others by Matsui and San (1992); Jeremi
(2000); Sainak (2004); Gri�ths and Marquez (2007).1.2.4 S
our experimentsThe pro
ess of s
ouring around stru
tures is a widely studied e�e
t. Many lab-oratory experiments have been 
arried out in the past to investigate s
our phe-nomena. Physi
al modelling has mainly been 
arried out in �umes with eithera steady 
urrent, waves or in rare 
ases a 
ombination of both. Previous in-vestigations have espe
ially fo
used on s
our around a pile in a steady 
urrent,as this type of s
our has led to several severe failures of river bridge piers in thepast. This phenomenon has been studied among others by Hjorth (1975); Melville(1975); Breusers et al. (1977); Ettema (1980); Zanke (1982b); Raudkivi and Et-tema (1983); Chiew and Melville (1987); Melville and Sutherland (1988); Melvilleand Chiew (1999); Oliveto and Hager (2002); Link and Zanke (2004); Roulundet al. (2005).8



1.2 Literature review
A 
entral question in most studies 
on
erns the equilibrium s
our depth, whi
his an important fa
tor governing stru
tural stability. Other topi
s of investigationin
lude times
ale, the shape of the s
our hole or the in�uen
e of sediment 
ompo-sition. Early examples of the three-dimensional numeri
al modelling of 
urrent-indu
ed s
our are given by Olsen and Melaaen (1993) and Olsen and Kjellesvig(1998). Whereas the results in the former 
ase were 
al
ulated using a steady-state solution of the �ow, the latter 
ase involved the modelling of unsteady �owwith additional 
onsideration of varying sediment transport rates along slopes.Measurements of 
urrent-indu
ed s
our together with the results of a numeri
alsimulation have been presented by Roulund (2000). Besides introdu
ing the 
on-
ept of sliding sediment grains in numeri
al models, Roulund also took a

ount ofthe 
hanges in the 
riti
al shear stress along slopes. Weilbeer (2001) 
onsideredthe same e�e
ts as Roulund and 
ompared his results with Roulund's measure-ments. A later study based on the same measurements was published by Roulundet al. in 2005.With the growth of o�shore te
hnology, questions arise 
on
erning s
our 
ausedby tides and waves. Investigations are normally 
arried out with regular or irreg-ular waves based on a parti
ular wave spe
trum (e.g. the Jonswap or the Pierson-Moskowitz spe
trum). The wave-indu
ed s
our around a slender pile was investi-gated by Sumer et al. (1992, 1993, 2007). In this �ow regime a horseshoe vortexand vortex shedding is present whi
h leads to intense sediment transport in theproximity of the stru
ture. It was shown by Sumer et al. (1992) and Kobayashiand Oda (1994) that the �ow regime around a 
ylinder may be des
ribed bythe Keulegan-Carpenter (KC) number. Slender piles lead to larger KC numbers(KC > 6) indi
ating the formation of a horseshoe vortex.In 
ontrast to the 
ase of a slender pile, the �ow regime around a large pile la
ksa horseshoe vortex, vortex shedding and �ow separation. Instead, di�ra
tion ofthe wave o

urs (Sumer and Fredsøe, 2002) and s
our is 
aused by wave-indu
edvelo
ities at the bed. This pro
ess was studied by Toue et al. (1992); Katsui andToue (1993) and Sumer and Fredsøe (2001a). Zhao et al. (2002) and Zhao andTeng (2004) presented the results of a simulated s
our in whi
h the shear velo
iteswere 
al
ulated by a wave model based on the Boussinesq equations and the mild-slope equations (Berkho�, 1972), respe
tively. The in�uen
e of the slope on the9
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sediment transport rate was not taken into a

ount.A wave with an underlying 
urrent leads to a s
our hole similar to that produ
edby a steady 
urrent. This e�e
t was studied by Eadie and Herbi
h (1986); Sumerand Fredsøe (2001b); Zhao et al. (2004); Rudolph and Bos (2006). If the �ow isstrong enough and the wave propagates in the same dire
tion as the 
urrent, thehorseshoe vortex is permanently present and be
omes weaker and stronger in analternating manner in a

ordan
e with the propagating waves. With in
reasing�ow velo
ity the shape and depth of the s
our hole 
onverges to that of a s
ourhole produ
ed by a 
urrent without wave a
tion. The results of a two-dimensionalnumeri
al �ow model with a 
ombined wave model based on the mild-slope equa-tions was presented by Zhao et al. (2004).1.3 Outline of the present investigationsFollowing the foregoing literature review 
overing the various topi
s of this thesis,a brief outline of the present investigation is now given. The investigation fo
useson the modelling of sediment transport and soil stability related pro
esses. Theinput to the sediment transport model is 
al
ulated by a �ow model des
ribed inChapter 2.1. A brief explanation of the governing equations, pressure treatment,and free surfa
e and turbulen
e modelling is presented. The boundary 
onditionsfor the 
ase of a superimposed wave are given in Appendix A. First order Airytheory and the stream fun
tion theory for higher order waves are presented.A des
ription of near-bed sediment transport is given in Chapter 2.2. In this
hapter the governing equations, transport rate equations, transport rate adjust-ments and the 
hanging 
riti
al mobility parameter on slopes are presented. Thein
lusion and treatment of gravity-indu
ed slidings of sediment grains in a nume-ri
al model are also explained.The mathemati
al theory underlying the implemented soil model is des
ribed inChapter 2.3. This 
hapter deals with the topi
 of linear and nonlinear deformations
al
ulated by a three-dimensional numeri
al model. Boundary 
onditions andsolution strategies are also taken into 
onsideration.Following a presentation of the di�erent parts of the numeri
al model, Chapter10



1.3 Outline of the present investigations
2.4 deals with the 
oupling and intera
tion of these models. The results of di�erentnumeri
al experiments to investigate �ow and wave indu
ed s
our as well as s
ourhole stability analyses are subsequently presented in Chapter 3.A 
on
lusion of the presented results together with a 
loser examination of theperspe
tives of numeri
al models in s
our and soil modelling are given in the
losing 
hapter of this thesis.

11
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2 Physi
al pro
esses and model
oupling
2.1 Flow modelThe �ow �eld in the proximity of stru
tures is always 
omplex. Be
ause the �ow�eld is predominantly three-dimensional, a three-dimensional model is ne
essary to
orre
tly simulate �ow behaviour. The governing equations of a three-dimensional(Reynold's averaged) Navier-Stokes equation solver are well known and may befound in numerous publi
ations, e.g. Ziegler (1995); White (2003); Kundu andCohen (2004). The following 
hapters present a summary of the equations usedand the methods by whi
h they are solved. Flow and sediment transport (seeChapter 2.2) model are based on the Telema
 modelling system developed by theLaboratoire National d'Hydraulique (LNHE) of the Ele
tri
ité de Fran
e (EDF).The �ow is solved on a three-dimensional mesh 
onsisting of wedge elements.The adve
tion in all simulations with �ow only is 
omputed using the method of
hara
teristi
s or the streamline-upwind/Petrov-Galerkin (SU/PG) method. Bothmethods are of �rst order. While the method of 
hara
teristi
s is more stable andless time-
onsuming than the SU/PG, it is known to generate more numeri
al dif-fusion whi
h has a smoothing e�e
t on the solution. Other methods in
lude theMURD (multidimensional upwind residual distribution) s
heme, whi
h is used inall nonlinear wave simulations, and the N and the PSI s
hemes. More detailedinformation on how these s
hemes handle adve
tion may be found in Hervouet(2007). The non-hydrostati
 algorithm used in the present study, whi
h was origi-nally developed by Jankowski (1999), is also presented in Hervouet (2007) togetherwith information on the �nite element method whi
h is used to 
al
ulate the dif-13
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fusion step. The handling of the free surfa
e, as based on Hervouet and Pham(2007), is des
ribed in Chapter 2.1.4.2.1.1 Governing equationsThe mathemati
al des
ription of �ows is part of the theory of 
ontinuum me
han-i
s. This 
onsists of the equations for the 
onservation of mass and 
onservationof momentum (Eq. 2.1 and 2.2), i.e. the so-
alled Navier-Stokes equations. Thesedes
ribe the distribution of velo
ity and pressure in time and spa
e, and are 
om-prised of a system of nonlinear partial di�erential equations of se
ond order. Abasi
 assumption in the following equations is that the �uid is in
ompressible.

∇~u = 0 (2.1)
∂~u

∂t
+ ~u · ∇~u = −1

ρ
∇p+ ~ν∇2~u+ ~f (2.2)In order to solve the Navier-Stokes equations by numeri
al methods it is �rstne
essary to simplify them. This is a
hieved by averaging the velo
ity and thepressure �elds. The resulting equations are referred to as Reynold's averagedNavier-Stokes equations (RANS). Firstly, the velo
ity and the pressure are splitinto an averaged part and 
orresponding �u
tuations:

ui = ui + u′i

p = p+ p′
(2.3)Inserting Eq. 2.3 into Eq. 2.2 leads to an expression (Eq. 2.4), in whi
h the un-known variables are averaged and where the solution is an approximation of theNavier-Stokes equations.

∂ui

∂t
+
ujui

∂xj

=
∂

∂xj

[
−pδij + µ

(
∂ui

∂xj

+
∂uj

∂xi

)
− u′iu

′
j

]
+ fi (2.4)The left-hand side of Eq. 2.4 represents the 
hange of mean momentum due tothe unsteadiness of the �ow and the 
onve
tion term. This is balan
ed by the14



2.1 Flow model
stress resulting from the pressure �eld, the vis
ous stress term, the apparent stress(
−u′iu′j

) (also known as the Reynold's stress) and the a
ting body for
es.The Reynold's stress tensor may be approximated by means of the Boussinesqapproa
h (Eq. 2.5). By inserting Eq. 2.5 in Eq. 2.4, an additional equation mustbe solved in order to obtain the turbulent vis
osity νt. This is a
hieved with theaid of a suitable turbulen
e model (see Chapter 2.1.5).
u′iu

′
j = −νt

(
ui

∂xj

+
uj

∂xi

− 2

3

∂uk

∂xk

δij

)
+

2

3
kδij (2.5)

2.1.2 Operator splittingThe method of operator splitting is used to split the Navier-Stokes equationsinto several parts based on the properties of the di�erential operators. Ea
h partmay then be treated in a single step by applying a suitable solution algorithm.All fra
tional steps together lead to the solution of the equation on the new timelevel. The splitting of an arbitrary variable is 
arried out a

ording to the followingequation:
∂ ~f

∂t
=

~fn+1 − ~fd

∆t
+
~fd − ~fa

∆t
+
~fa − ~fn

∆t
(2.6)The �rst fra
tional step is the adve
tion step, whereby the variable fn is treatedusing one of the s
hemes mentioned in the introdu
tion. This results in an interimsolution fa. The subsequent di�usion step, as 
omputed by the �nite elementmethod, results in fd. Applying the 
ontinuity equation, a preliminary solutionfor the variable fn+1 may be found. In the solution of the Navier-Stokes equationsthe variable f is a velo
ity u,v, or w or a tra
er that is transported with the �ow.Considering the velo
ity, Eq. 2.6 takes the form

∂~u

∂t
=
~un+1 − ~ud

∆t
+
~ud − ~ua

∆t
+
~ua − ~un

∆t
(2.7)15
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The hydrostati
 pressure 
omponent is �rst taken into a

ount. Splitting intofra
tional steps, the adve
tion step is des
ribed by:

~ua − ~un

∆t
+ ~u · ∇~u = 0 (2.8)Equation 2.8, whi
h is hyperboli
 in nature, may be solved by the method of
hara
teristi
s or the Streamwise-Upwind/Petrov-Galerkin method (SU/PG). Al-though the latter is less di�usive, it is far more time-
onsuming in 
omputationalterms. Using the SU/PG method, adve
tion and di�usion are solved in a singlestep. Otherwise the di�usion step is 
omputed by means of Eq. 2.9.

~ud − ~ua

∆t
= ∇ · (~ν∇~u) + ~Fu (2.9)The ve
tor ~Fu in
ludes sour
e terms from free surfa
e gradients and density gra-dients as well as mis
ellaneous sour
es. The solution of this equation may beobtained by the �nite element method. The result obtained from the adve
tionand di�usion step is an interim solution of the velo
ity �eld ~u. In order to getthe �nal velo
ity �eld the dynami
 pressure must be 
al
ulated by means of thePoisson pressure equation (see Chapter 2.1.3).2.1.3 Treatment of pressureThe frequently adopted assumption of a hydrostati
 pressure distribution is nolonger valid when dealing with waves or �ow around stru
tures. The a

elerationof �uid parti
les in su
h 
ases results in a dynami
 pressure 
omponent whi
h mustalso be taken into a

ount. This is a
hieved by splitting the overall pressure intoa hydrostati
 (pH) and a dynami
 (pD) 
omponent (Jankowski, 1999; Hervouet,2007):

p = pH + pD (2.10)The hydrostati
 
omponent pH may be 
al
ulated by integrating over the waterdepth:
pH =

S∫

z

ρg dz (2.11)
16



2.1 Flow model
By splitting the pressure into a hydrostati
 and a dynami
 
omponent, the formof the momentum equation (Eq. 2.2) 
hanges as follows:

∂u

∂t
+ ~u · ∇u = −g∂S

∂x
− g

∂

∂x




S∫

z

∆ρ

ρ0
dz


− 1

ρ0

∂pD

∂x
+ ∇ · (~ν∇u) (2.12)

∂v

∂t
+ ~u · ∇v = −g∂S

∂y
− g

∂

∂y




S∫

z

∆ρ

ρ0

dz


− 1

ρ0

∂pD

∂y
+ ∇ · (~ν∇v) (2.13)

∂w

∂t
+ ~u · ∇w = − 1

ρ0

∂pD

∂z
+ ∇ · (~ν∇w) (2.14)Horizontal gradients of the free surfa
e as well as pressure gradients appear in theabove momentum equations (Eq. 2.12-2.14). In the verti
al dire
tion, only thehydrodynami
 pressure gradient is retained. The hydrodynami
 pressure 
ompo-nent may be 
al
ulated by means of the Poisson pressure equation, whi
h maybe developed from the Navier-Stokes equations. The time derivative of velo
itiesmay be treated using the method of operator-splitting (see Chapter 2.1.2), whi
hresults in:

∂u

∂t
=
un+1 − ũ

∆t
+
ũ− un

∆t
(2.15)In Eq. 2.15 ũ is an interim solution of the velo
ity �eld, whi
h is not rquired toful�l the 
ondition of in
ompressibility. Eqs. (2.12-2.14) may be 
onverted intotwo sets of equations, one of whi
h in
ludes the pressure gradients and the otherof whi
h is free of pressure terms:

ũ− un

∆t
+ ~u · ∇u = −g∂S

∂x
− g

∂

∂x




S∫

z

∆ρ

ρ0
dz


+ ∇ · (~ν∇u) (2.16)

ṽ − vn

∆t
+ ~u · ∇v = −g∂S

∂y
− g

∂

∂y




S∫

z

∆ρ

ρ0
dz


+ ∇ · (~ν∇v) (2.17)

w̃ − wn

∆t
+ ~u · ∇w = − ρ

ρ0

g + ∇ · (~ν∇w) (2.18)
17
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~un+1 − ~̃u

∆t
= − 1

ρ0

∇pD (2.19)Taking a

ount of the fa
t that the resulting velo
ity �eld must ful�l the in
om-pressibility 
ondition (∇ · ~un+1 = 0), the following form of the Poisson pressureequation is obtained:
∇2pD =

ρ0

∆t
∇ · ~̃u (2.20)The divergen
e-free velo
ity �eld for the next time step is obtained from Eq. 2.19and the solution of Eq. 2.20.

2.1.4 Free Surfa
eThe requirements pla
ed on the quality of the free surfa
e model in
rease noti
e-ably when dealing with waves. Past simulations of streaming indu
ed s
our were
arried out by 
al
ulating the free surfa
e in an in
remental step based on thesolution of the two-dimensional (depth-averaged) 
ontinuity equation. The �nalvelo
ity �eld was then 
omputed in a se
ond step after performing a velo
ity pro-je
tion (see Jankowski (1999); Weilbeer (2001)). Simulations with nonlinear wavesindi
ated the need for very small time steps. Using this type of s
heme, it wasalso found that ex
essive wave damping o

urred. This pro
edure was adaptedand signi�
antly improved by Hervouet and Pham (2007). All simulations dealingwith waves in the present work implement a s
heme for the free surfa
e whi
hsolves the three-dimensional 
ontinuity equation and avoids the assumption of ahydrostati
 pressure distribution. Instead, the dynami
 pressure is 
al
ulated atthe (former) hydrostati
 step and is taken into a

ount when solving the 
ontinu-ity equation. As a result, the waves show no damping when propagating throughthe 
omputational domain.The entire 
al
ulation is performed in a semi-impli
it manner, whereby thevelo
ity is 
al
ulated by Eq. 2.21, with θ as the impli
itness fa
tor (ranging from0 to 1):
−→
U = θu

−→
U n+1 + (1 − θ)

−→
U n (2.21)Inserting Eq. 2.21 into the 
ontinuity equation and negle
ting sour
e terms leads18



2.1 Flow model
to

hn+1 − hn

∆t
+ ∇h

(
θu
−→u n+1 + (1 − θ)−→u n

)
= 0 (2.22)While the above equation appears to be quite trivial, the problem of solving thisequation is 
onne
ted with the fra
tional step method. The �nal velo
ity �eld(and the �nal dynami
 pressure, whi
h is in
luded in −→u n+1) is not known at thispoint in time. This means that an interim solution suitable for 
al
ulating thefree surfa
e is required. The variable −→u n+1 is 
al
ulated by averaging Ũ over thedepth.Assuming that an adve
tion step based on the method of 
hara
teristi
s oran alternative expli
it method has already been performed, the velo
ity UC isknown. Eq. 2.23 is derived from the momentum equation and provides a meansof 
al
ulating the interim solution for the velo
ity Ũ . In a hydrostati
 solution

Ũ would be equal to Un+1. So far Eq. 2.23 has been used in this hydrostati
step. This in
ludes the velo
ity after the adve
tion step as well as the gradients ofthe free surfa
e and the turbulent di�usion. The dynami
 pressure is taken intoa

ount in a later fra
tional step. In order to over
ome the modelling problemswhen simulating nonlinear waves, it is ne
essary to implement the full momentumequation, whi
h in
ludes the dynami
 pressure (Eq. 2.24).
−→̃
U −−→

U C

∆t
= −s1u

−→̃
U − g

−−→
grad(Zs) + div (νt grad(

−→
U )) (2.23)

−→̃
U −−→

U C

∆t
= −s1u

−→̃
U − g

−−→
grad(Zs) −

1

ρ

−−→
grad (pd) + div (νt grad(

−→
U )) (2.24)The proje
tion step for 
omputing the velo
ity is 
arried out as the last fra
tionalstep and has a di�erent meaning when treating the (fomer) hydrostati
 step inthe above-mentioned manner. The 
al
ulated pressure then only represents anin
rement whi
h is added to obtain the �nal velo
ity. The verti
al velo
ity, whi
hhas not been 
onsidered so far, must also to be taken into a

ount in order tomaintain 
onsisten
y of the algorithm. The 
orresponding modi�
ation is givenby Eq. 2.25.

W̃ n+1 = WD − ∆t

ρ

∂ (pd)

∂z
(2.25)19
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When 
onsidering the divergen
e of the momentum equation and splitting this intoa hydrostati
 step, whi
h in
ludes adve
tion, di�usion, the e�e
t of the hydrostati
pressure and the sour
e terms, and a step for 
al
ulating the dynami
 pressure,the resulting equation is Eq. 2.26. Ũ is again the interim solution for the velo
ityfollowing the above-mentioned steps. A knowledge of the dynami
 pressure at thisfra
tional step leads to an improved solution of the 
ontinuity equation, espe
iallywhen simulating a propagating nonlinear wave.

div

(
1

ρ

−−→
grad(pd)

)
+

1

∆t
div

(−→̃
U −−→

U n

)
= 0 (2.26)

2.1.5 Turbulen
e modellingThe k-ω model di�ers from the well-known and widely used k-ε model parti
ularlyin two parti
ular aspe
ts. Firstly, it is possible to integrate through the vis
ousboundary layer. This means that values for k and ω may be imposed dire
tly at theboundary. Se
ondly, the model produ
es better results when dealing with adversepressure gradients, as shown by Menter (1992) and Wil
ox (1993). Weilbeer(2001), for example, testet di�erent variants of the k-ω model for modelling �owaround a 
ylinder. The standard version was �rst testet, followed by the so-
alledBSL and SSL variants. The latter variant is able to eliminate the high sensitivityof the model in the upstream region of the 
ylinder, as 
aused by the presen
e ofa stagnation point.The original k-ω model 
onsists of two transport equations. The �rst of theseis for the turbulent kineti
 energy k:
∂k

∂t
+ ~u∇k = ∇ ·

(
ν +

νt

σk

)
∇k + P − β∗kω (2.27)and the se
ond for the dissipation rate ω:

∂ω

∂t
+ ~u∇ω = ∇ ·

(
ν +

νt

σω

)
∇ω + α

ω

k
P − βω2 (2.28)20



2.1 Flow model
The appropriate produ
tion term P may be written as:

P = νt

(
∂ui

∂xj

+
∂uj

∂xi

)
∂ui

∂xj

(2.29)It is �nally possible to 
al
ulate the eddy vis
osity, whi
h may then be insertedinto the RANS momentum equation:
νt =

k

ω
(2.30)Five empiri
al 
onstants are required in the standard formulation of the k-ω model(Table 2.1).

α β∗ β σk σω

5
9

9
100

3
40

2 2Table 2.1: Default values of the empiri
al k-ω 
onstants
Menter (1992) developed two variants of the k-ω model in order to resolve theweaknesses of the standard version, namely the BSL (Baseline) and the SST (ShearStress Transport) variants. The BSL model 
ombines the positive behaviour ofthe k-ω model of Wil
ox in the near wall region with the k-ε, whi
h yields goodresults in the region outside of the boundary layer. The BSL variant of Menterwas further enhan
ed by Wil
ox, who developed the following transport equationfor ω:

∂ω

∂t
+ ~u∇ω = ∇ ·

(
ν +

νt

σω

)
∇ω + α

ω

k
P − βω2 +

σd

ω
∇k∇ω (2.31)with 21
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σd =





0, ∇k∇ω ≤ 0

σ, ∇k∇ω ≥ 0
(2.32)In addition to the assumptions made in the BSL model, the SST variant of thek-ω model takes into a

ount the fa
t that for �ows with a boundary layer thestress (Bradshaw et al., 1967) 
annot ex
eed

τ = 0.3ρk (2.33)The turbulent vis
osity is de�ned by
νt =

0.3k

max(0.3ω; ΩF )
(2.34)in whi
h the vorti
ity is 
al
ulated using Eq. 2.35.

|Ω| =

∣∣∣∣
∂w

∂y
− ∂v

∂z

∣∣∣∣ +
∣∣∣∣
∂u

∂z
− ∂w

∂x

∣∣∣∣ +
∣∣∣∣
∂v

∂x
− ∂u

∂y

∣∣∣∣ (2.35)The blending fun
tion F (Eq. 2.36) is then applied in order to make use of theoriginal formulation in regions outside of the boundary layer. In Eq. 2.36 z denotesthe distan
e from the boundary.
F = tanh



[
max

(
2

√
k

0.09ωz
;
500ν

z2ω

)]2

 (2.36)

2.1.6 Bottom shear stressExperiments were 
arried out by Nikuradse (1933) on pipes with sand along thepipe walls. The grain size s varied from s/R = 1/15 to s/R = 1/500, whereby Rdenotes the pipe radius. The e�e
tive grain roughness 
oe�
ient that resultingfrom these experiments is referred to as ks. This parameter des
ribes the in�uen
eof roughness on the �ow in the vi
inity of a boundary. It is assumed that the totalroughness ks is the sum of the grain roughness ks,g and a form roughness ks,f , dueto bed forms su
h as ripples and dunes. In the s
our experiments 
arried out in22



2.1 Flow model
the present work the form roughness is negle
ted and therefore ks,f = 0.

ks = ks,g + ks,f (2.37)Based on the mean parti
le size, the grain roughness may be approximated asfollows:
ks,g = 3 dm (2.38)In the 
ase of rough 
hannels the vis
ous layer at the boundary is followed by aregion with a logarithmi
 velo
ity distribution. The logarithmi
 law des
ribingthis distribution may be expressed as

u

u∗
=

1

κ
ln

(
y0

ks

)
+B (2.39)Here, u/u∗ is the ratio of the �ow velo
ity to the shear velo
ity and κ is the vonKarman 
onstant, whi
h is equal to 0.41. The distan
e from the boundary isdenoted by y0 and ks is the boundary roughness mentioned above. The 
onstant

B is a fun
tion of the non-dimensional roughness parameter k+
s = u∗ks/ν. For aturbulent �ow in a 
ompletely rough regime Nikuradse found that B = 8.5. Thisredu
es Eq. 2.39 to

u

u∗
=

1

κ
ln

(
30 y0

ks

) (2.40)In order to 
al
ulate the sediment transport rate, the shear stress at the bottomis also required. Using the shear velo
ity from Eq. 2.40 and inserting this into Eq.2.41 leads to the shear stress that is used in the sediment transport model.
u∗ =

√
τB
ρ

(2.41)
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2.2 Sediment transport and bottom evolutionWhen a �uid �ows over a movable bed 
onsisting of sediment parti
les, a shearfor
e develops and a
ts on the single grains. The shear for
es are 
aused by the
oarseness of the bed, whi
h gives rise to pressure �u
tuations, and also due tothe fa
t that �uids tend to adhere to solid walls (Zanke, 1982a). In the 
ase thatthe shear for
es are large enough to set the grains in motion, sediment transporttakes pla
e. Lighter sediments go into suspension and are 
arried away by the�ow. Heavier sediments are transported as bed-load near the bottom surfa
ein the dire
tion of the shear stress. As will be demonstrated in Chapter 2.2.5,this behaviour is also in�uen
ed by the bottom slope. In the present model thesuspended sediment transport is negle
ted, as only 
oarser material is used in thenumeri
al experiments whi
h tends to be transported as bed-load.2.2.1 Material propertiesSediments in a natural environment 
onsist of parti
les or grains whi
h primarilyresult from the disintegration of ro
ks. Grain sizes range from large fragmentsto small, 
olloidal parti
les. The shape of grains is formed by the natural envi-ronment, whi
h leads to rounded as well as angular grains. The density of grainsvaries a

ording to the 
omposition of the 
onstituent materials. The predominantmaterials present in sediment grains are quartz and 
lay. While quartz is non-
ohesive, 
lay is generally 
ohesive due to the fa
t that it 
onsists of �at plates witha diameter of less than about 0.06mm. This means that 
lay tends to �o

ulate.The size of sandy parti
les, as used in the present experiments, lies in the range of0.06mm to 2mm. The density of the above-mentioned materials is approximately
ρs = 2650 kg/m3. The spe
i�
 gravity is given by the ratio of the �uid density tothe sediment density: s = ρs/ρ. An additional property relevant to the presentstudy is the angle of repose, whi
h is a limiting parameter with regard to slopeangles.The sediment properties 
onsidered here are:� density� shape24



2.2 Sediment transport and bottom evolution
� size� angle of reposeNegle
ting suspended sediment transport in the present investigation (see Chapter2.2.2), a knowledge of the fall velo
ity is not required. This also applies to theporosity, whi
h is only required when 
onsidering the pa
king of sediments and
onsolidation history. A single dimensionless parameter D∗ (Eq. 2.43) is usedhere to des
ribe sediment parti
les and their properties. This parameter re�e
tsthe in�uen
e of the gravity g, the parti
le density ρ and the �uid vis
osity ν.Sediments in a natural environment 
onsist of a range of parti
le sizes. Here d50 isused, whi
h is the median parti
le diameter of the bed material, i.e. the parti
lesize below whi
h 50% by weight is �ner. Another 
hara
terisation often used isthe mean parti
le size, whi
h is de�ned as

dm = Σ (pi di)/100 (2.42)whereby pi is the per
entage by weight of ea
h grain.
D∗ =

(
(ρS − ρ)

ρ

g

ν2

) 1

3

d50 (2.43)
2.2.2 Bottom evolutionThe result of a �ow simulation provides a knowledge of the magnitude and thedire
tion of the shear stress a
ting on the sediment parti
les (~τB). This informationmay be used to determine the transport 
apa
ity (see Chapter 2.2.4) and thedire
tion of the sediment �ux ~qs. The sediment �ux and the shear stress arerelated by Eq. 2.44. This ve
tor does not in
lude the for
e of gravity a
tingon the sediment parti
les. The in�uen
e of slopes and therefore gravity will bedis
ussed in Chapter 2.2.5.1. The sediment �ux alone o�ers no information onhow the bed will 
hange in height. Inserting the result of Eq. 2.44 in the bottomevolution equation (Eq. 2.45) leads to the 
hange of bed height with time, i.e. the25
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bottom evolution.

~qs = qs
~τB
‖~τB‖

(2.44)
∂zB

∂t
= − div ~qs = −

(
∂qsx
∂x

+
∂qsy
∂y

) (2.45)2.2.3 In
eption of sediment motionSediment transport takes pla
e when the a
ting shear stress ex
eeds a 
riti
alvalue. A large number of experimental studies dealing with this topi
 have been
arried out by various investigators, e.g. Shields (1936); Graf (1971); Raudkivi(1976); Yalin and da Silva (2001). In most studies the 
riti
al value for in
ipientmotion of sediment is related to the 
riti
al bed shear stress τb,cr. In a non-dimensional expression this is referred to as the 
riti
al Shields parameter θcr(Eq. 2.47), as shown in Fig. 2.1. Although this is still the most widely adopted
riterion for de�ning the in
eption of sediment motion, a number of in
onsisten
iesand mis
on
eptions (Bu�ngton, 1999) and dis
repan
ies exist in the experiments(Shvid
henko and Pender, 2000).The 
riti
al Shields parameter may be 
al
ulated by parametrizing the Shields
urve (Eq. 2.46), as 
arried out by van Rijn (1993). the shear stress and mobilityparameters are related by Eq. 2.47. While Shields relates the 
riti
al shear stress toa Reynold's number whi
h in
ludes the a
tual shear stress a
ting on the parti
les,van Rijn uses the dimensionless parti
le diameter D∗, whi
h in
ludes the materialdensity in order to 
al
ulate the 
riti
al value. Both methods lead to similarresults.
θcr = 0.24 D−1

∗ for 1 < D∗ ≤ 4

θcr = 0.14 D−0.64
∗ for 4 < D∗ ≤ 10

θcr = 0.04 D−0.1
∗ for 10 < D∗ ≤ 20

θcr = 0.013 D0.29
∗ for 20 < D∗ ≤ 150

θcr = 0.055 for D∗ > 150

(2.46)
θ =

τb
(ρS − ρ)gd

≥ θcr (2.47)
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2.2 Sediment transport and bottom evolution

Figure 2.1: In
eption of sediment motion (Shields, 1936)
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Figure 2.2: Parametrization of the Shields 
urve
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2.2.4 Transport rate2.2.4.1 Van RijnEq. 2.49 developed by van Rijn (1984) is based on laboratory experiments. Thegrain diameters 
onsidered in the experiments were in the range of 200µm <

d50 < 2000µm. The water depth was greater than 0.1m in all experiments andthe Froude number was less than 0.9.Van Rijn assumes in his approa
h that parti
le movement is dominated byjumps and saltation. The bed height may then be approximated by the followingequation:
δb
d

= 0.3 D0.7
∗ T 0.5 with T =

τb − τb,cr
τb,cr

(2.48)
qs = α

√
ρs − ρ

ρ
gd3

50 D
−0.3
∗ T β (2.49)An equation for the parti
le velo
ity was also developed from experiments andhas the following form:

ub

[(s− 1) g d]0.5 = 1.5 T 0.6 with s =
ρS

ρ
(2.50)Using the equation for the sediment 
on
entration

cb
co

= 0.18
T

D∗
(2.51)and inserting it into qs = δbubcb results in Eq. 2.49, whi
h may be used todetermine the transport 
apa
ity under the given 
onditions.For a value of T > 3the equation was found to overestimate the transport 
apa
ity and was hen
emodi�ed in order to �t the results of the laboratory experiments:

qs = 0.053 (s− 1)0.5 g0.5 d1.5
50 D−0.3

∗ T 2.1

qs = 0.1 (s− 1)0.5 g0.5 d1.5
50 D−0.3

∗ T 1.5 for T ≥ 3

(2.52)
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2.2.4.2 Meyer-Peter and MüllerAn alternative approa
h for 
al
ulating the bed-load transport 
apa
ity is bymeans of Eq. 2.53, as developed by Meyer-Peter and Müller (1948, 1949). Nu-merous experiments were 
arried out in a �ume with a length of 50m and a 
ross-se
tion of 2 × 2m2. The water depth was 0.1 to 1.2m. The resulting equationis only valid for parti
le sizes greater than 0.4mm and less than 29mm, whi
happroximately 
orresponds to the diameter range of 
oarse sand. This equationis therefore more appli
able in a river than in a 
oastal environment. In thepresent work the equation was used e.g. for 
al
ulating the transport 
apa
ity ina simulated laboratory experiment with an arti�
ial sediment (see Chapter 3.1.1).

qs = 8

√
ρs − ρ

ρ
gd3

m(µθ − θcr)3

qs = 8
1

ρ1/2(ρs − ρ)g
(µτb − τcr)

(2.53)
In Eq. 2.53, θ is again the mobility parameter (Eq. 2.47) and µ is the bed-formfa
tor, whi
h may be 
al
ulated using the overall Chézy 
oe�
ient (Eq. 2.55) andthe grain-related Chézy 
oe�
ient (Eq. 2.56).

µ =
C

C ′
(2.54)

C = 18 ln(12h/ks) (2.55)
C ′ = 18 ln(12h/d90) with d90 = 3dm (2.56)Meyer-Peter and Müller used the mean diameter dm in their work. This is about1.1 to 1.3 times greater than the d50 parameter for almost uniform material. Byway of an example Van Rijn (1993) demonstrated that the in�uen
e of the parti-
le diameter on the resulting sediment transport 
apa
ity is only very small andtherefore the median parti
le diameter d50 may also be used. 29
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2.2.4.3 Engelund and FredsøeThe transport rate equation developed by Engelund and Fredsøe (1976) des
ribesthe transport rate as a produ
t of the parti
le volume, the parti
le velo
ity ub andthe probability of o

urren
e of moving parti
les per parti
le area. This equationreads as follows:

qs =
π

6
d3 p

d2
ub (2.57)The required parti
le velo
ity may be 
al
ulated using a semi-empiri
al equation(Eq. 2.58), where u∗ is the shear velo
ity and α is a parameter in the range of 6to 10. In the experiments presented at a later stage a value of α = 10 is used.

~ub = α~u∗

(
1 − 0.7

√
θcr

θ

) (2.58)The probability of o

urren
e of moving parti
les is 
al
ulated using Eq. 2.59,where µd is the dynami
 fri
tion 
oe�
ient. For the materials 
onsidered in thepresent study a value µd = 0.51 was adopted.
p =

[
1 +

( π
6
µd

θ − θcr

)4
]−1

4 (2.59)2.2.4.4 ChengMost transport rate equations are of an empiri
al nature and were developedwith the aid of laboratory measurements. As these measuerements were madeunder di�erent 
onditions, e.g. for low, moderate or high shear stress, the derivedequations are only valid for the parti
ular 
onditions 
orresponding to ea
h set ofmeasurements. The sediment transport formula of Cheng (2002) was derived to�t measurements and transport formulae for low, moderate and high shear stress
onditions. The 
on
ept of 
riti
al shear stress was not taken into a

ount owingto its limitations when dealing with low shear stress and hen
e weak sedimenttransport. Experiments su
h as those of Paintal (1971) show that there is noshear stress below whi
h absolutely no grains move. Although the transport rate30
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be
omes very small for very low shear stress values, it never equals zero.The non-dimensional transport rate equation of Cheng is derived from the re-lationship Φ ∼ θn and takes the form

Φ = 13 θ1.5 exp

(
−0.05

θ1.5

) (2.60)whereby the transport rate qs may be written as
qs = Φ d

√
(s− 1)gd (2.61)Eq. 2.60 �ts the measurements of Meyer-Peter and Müller (1948), Einstein(1950), Bagnold (1973) and Yalin (1977) well for moderate and high shear stress.A 
omparison of Eq. 2.60 with the formulae of Paintal (1971) and Einstein (1942)shows that it is also able to 
orre
tly reprodu
e transport rates under low shearstress 
onditions.2.2.5 In�uen
e of bottom slopeThe bottom slope is the in
lination of the bottom surfa
e measured from a hori-zontal plane. The bottom slope in�uen
es both the dire
tion and the amount ofthe transported sediment due to the gravity for
e 
omponents a
ting on the sedi-ment parti
les. In the 
ase of a developing s
our simulated by a numeri
al model,the slope angle grows qui
kly and unhindered owing to the absen
e of a limitingparameter for erosion or the slope gradients in the bottom evolution or transportrate equations. Almost all transport rate equations were developed for a horizon-tal bed. In an environment with bottom slopes, however, these equations do notyield a meaningful solution. In addition to the �owing �uid, whi
h gives rise toshear stress at the bottom surfa
e, a slope-indu
ed downhill for
e is present whi
hmust also be taken into a

ount. This 
auses a 
hange in the sediment transportrate and shifts the point of in
eption of the sediment motion.An additional slope-indu
ed e�e
t is the sliding of sediment grains when thebottom angle attains the fri
tion angle and a failure of bottom stability o

urs.Approa
hes taken from the literature whi
h are used in the numeri
al model willbe dis
ussed in the following 
hapters. 31
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2.2.5.1 Transport rateAn in
rease in the transport rate on a downward slope is taken into a

ount byapplying di�erent equations for a longitudinal and a transverse slope. Eq. 2.62 asdeveloped by van Rijn (1993) based on the equation of Smart (1984), predi
ts theampli�
ation fa
tor kL for the transport rate on a downward slope. In Eq. 2.62 Cis the Chézy 
oe�
ient and βL is the slope angle in the longitudinal dire
tion.Although it seems reasonable to assume that the transport rate in the uphilldire
tion should be de
reased, Damgaard et al. (1997) found that no modi�
ationis ne
essary in this 
ase. It is only ne
essary to take into a

ount the modi�
ationof the Shields parameter (see Chapter 2.2.5.2) for an in
reasing elevation when
al
ulating the bed-load.

kL =
1

2
g−0.5

(
d90

d30

)0.2

C tan0.6 βL

(
τb

(τb − τb,cr)

)0.5 (2.62)The bed-load transport in the transverse dire
tion was studied by Engelund(1974), Ikeda (1988) and Sekine and Parker (1992). The approa
h of Ikeda was
hosen in the present study and implemented in the sediment transport model.The transport rate in the transverse dire
tion is des
ribed by:
qs,T = 1.5

(τcr,T
τ

)0.5

tanβT qS (2.63)Fig. 2.3 shows the e�e
ts of Eq. 2.63. Be
ause the slope is perpendi
ular to thea
ting shear velo
ity, the dire
tion of sediment transport is in�uen
ed by the slope.The resulting sediment transport rate ve
tor is then no longer in the dire
tion ofthe shear velo
ity, but slightly in
lined in the dire
tion of the slope. The otherextreme situation is when the shear velo
ity is in the same dire
tion as the slope.Figure 2.4 shows how the sediment transport rate is in
reased by Eq. 2.62 in thelatter 
ase without any alteration in its dire
tion.2.2.5.2 Criti
al Shields parameterSediment parti
les lying on a downhill slope are a�e
ted by a downhill for
e whi
hin
reases the parti
le mobility in the dire
tion of the slope and vi
e versa in the32
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Figure 2.3: In�uen
e of a transverse slope on qsuphill dire
tion. Experimental data indi
ate that not only the transport rate(Smart, 1984) but also the threshold 
onditions 
hange on a sloping bed. It isne
essary to modify the 
riti
al mobility parameter θc in order to take a

ountof this e�e
t. The latter is de
reased when the shear velo
ity points in the samedire
tion of the slope and in
reased when it points upwards.The Shields parameter for a horizontal bed is thus adjusted by Eq. 2.64 andEq. 2.65 for longitudinal and transverse slopes based on the dire
tion of the bedshear velo
ity. Eq. 2.64 whi
h was �rst presented by S
hoklits
h (1914), wasderived from the equilibrium of for
es a
ting on a single parti
le on a slopingbed. A 
omparison with experimental data was found to show good agreement(Whitehouse and Hardisty, 1988). An adjustment of the 
riti
al Shields parameterfor transverse slopes (Eq. 2.65) was also derived by Lane (1955) and Ikeda (1982),and �rst presented by Leiner (1912). In Eq. 2.64 and Eq. 2.65, φ is the angle ofrepose and β is the a
tual slope angle. Fig. 2.5 shows a plot of both equations.Although these equations are only de�ned for small slope angles, the results forsteeper slopes are still found to be reasonable. Both approa
hes 
onverge to zero33
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Figure 2.4: In�uen
e of a longitudinal slope on qs
when the slope angle 
onverges to the fri
tion angle. As a 
onsequen
e, bothvalues must to be limited in order to avoid meaningless results.

αL =
sin(φ− βL)

sinφ
(2.64)

αT = cosβT

[
1 − tan2 βT/ tan2 φ

]0.5 (2.65)Similar investigations 
arried out by Chiew and Parker (1994), Hasbo (1995),Whitehouse and Hardisty (1988), Lau and Engel (1999) and Luque and Beek(1976) resulted in similar expressions for the 
orre
tion of 
riti
al Shields para-meter. The approa
hes of S
hoklits
h and Leiner were used in the present studyowing to the reasonable results obtained.34
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Figure 2.5: Corre
tion fa
tor of S
hoklist
h and Leiner2.2.6 Sliding sedimentsDeveloping s
our gives rise to steep slopes along all sides of a s
our hole. Theslope angle in
reases and 
onverges to the fri
tion angle (Table 2.2). This even-tually leads to failure of slope stability and to sliding sediments along the slopein the dire
tion of the downward gradient. This pro
ess, whi
h has been studiedin laboratory experiments (Roulund et al., 2005), must to be taken into a

ountin order to obtain reasonable results from the numeri
al model. The resultingbottom geometry is therefore limited by this stability 
riterion. The s
our pro
essis only de�ned for sandy material without any 
ohesive sediments. Fig. 2.6 showsa de�nition sket
h of the sediment grains sliding down a slope whith a slope angle
β greater than the fri
tion angle.This pro
ess may be modelled in a number of di�erent ways. Roulund et al.(2005) developed an algorithm in whi
h a sediment transport is initiated from thehighest points in the dire
tion of the downward gradient. The unstable 
onditionof the bottom is transformed into a stable 
ondition by an iterative pro
edure inwhi
h the �nal geometry is attained in in
remental steps.An alternative method for simulating sediment slide is the iterative shifting of35
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Figure 2.6: Slope with a slope angle β showing the sediment slide dire
tionsediment without the need to 
al
ulate a transport rate and solve the bottomevolution equation. Sediment shifting implies that the material at a higher meshpoint is transferred to a nearby neighbouring point lower than the sediment sour
e,and where the slope angle between those two points ex
eeds a 
ertain limit. Thislimit is naturally the fri
tion angle plus a small threshold value. The algorithm isterminated when the fri
tion angle is attained. This guarantees that the resultingbottom geometry satis�es one soil parameter and that no points of dis
ontinuityexist. As threshold value of two degrees proposed by Roulund et al. (2005) wasalso used in the present model.
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Fri
tion angle (φ)

d50 [m] Rounded parti
les Angular parti
les
≤ 0.001 30° 35°0.005 32° 37°0.01 35° 40°0.05 37° 42°
≥ 0.1 40° 45°Table 2.2: Range of the fri
tion angle (van Rijn, 1993)

37



2 Physi
al pro
esses and model 
oupling
2.3 Soil modelWhen a slope develops, the slope gradient in
reases 
ontinuously until failureo

urs. The sliding of sediment grains then takes pla
e in order to re-establisha stable slope 
ondition. Flow and fra
ture are the two main failure modes. Asandy soil tends to �ow when the stress ex
eeds a 
riti
al value, whereas fra
tureis of more interest when 
onsidering ro
ks and 
on
rete. The modelling pro
edurethus involves a 
al
ulation of the deformations, a determination of the point offailure and then an estimation of how the material responds under �ow 
onditions.The �rst part of this pro
edure is dealt with by an elasti
 model that approxi-mates the material behaviour as beeing linear elasti
 (Chapter 2.3.2.1). Se
ondly,a failure 
riterion is introdu
ed whi
h is suitable for determining the transitionpoint between linear elasti
ity and plasti
 deformations.Although soil is a mixture of parti
les of di�erent minerals in whi
h the porespa
es are �lled by either a �uid, gas or both, it is treated and idealised as a
ontinuum. This implies that it may be subdivided into a number of elementswhereby ea
h element represents a part of the 
ontinuum. Although the parti
-ulate nature of soil is negle
ted in most engineering appli
ations, several theoriesexist whi
h take this into a

ount (Davis and Selvadurai, 2002).
2.3.1 Stress and strainFor
es a
ting on a body 
ause a deformations whi
h may be expressed with theaid of a displa
ement ve
tor (Eq. 2.66). This ve
tor points from the origin to thelo
ation where a point has moved due to the deformation pro
ess. By assigninga ve
tor to every point of the body a ve
tor �eld 
overing the 
omplete volumeis obtained. Taking spatial derivatives of the 
omponents of the displa
mentve
tor gives the displa
ement gradient matrix ∇u (Eq. 2.67). The 
omponents aredenoted by ε for the extensional strains and γ for the shear strains, respe
tively.The stresses and 
orresponding strains resulting from the a
ting for
es are re-lated by the 
onstitutive equations. These equations, whi
h are material-dependent,38
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are des
ribed in Chapter 2.3.2.

~u =


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w


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es a
ting on a single element
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Considering stati
 equilibrium, body and 
onta
t for
es within the body andagitating for
es a
ting on the body surfa
e summate to zero. The body for
e inthe present 
ontext is simply the gravitational for
e. The relationship betweenagitating for
es and stresses within the body is expressed by

∂σx

∂x
+
∂τxy

∂y
+
∂τxz

∂z
+Fx = 0

∂τyx

∂x
+
∂σy

∂y
+
∂τyz

∂z
+Fy = 0

∂τzx

∂x
+
∂τzy

∂y
+
∂σz

∂z
+Fz = 0AT

σ +F (2.68)
whereby σ and τ denote the normal stress and the shear stress, respe
tively.Agitating for
es are denoted by F . Fig. 2.7 shows the 
orresponding for
es a
tingon a single element.These three equations must be satis�ed at all points in the body. The right-hand side of these equations is zero due to the assumption of stati
 equilibrium.For the solution of the above-mentioned equations it is ne
essary to determinethe three displa
ements, the six strain 
omponents and the six independent stress
omponents. The strains from the 
orresponding displa
ements are 
omputed bythe �nite element method. The equilibrium 
ondition alone yields only three equa-tions, whereas a total of six equations must be solved for the stress 
omponents.The missing equations are provided by the 
onstitutive equations.In a �nite element model the body is divided into single elements forming amesh. The stresses and strains are 
al
ulated at spatial points within these ele-ments by using Eqs. 2.66-2.68. A des
ription of the �nite elements used for thespatial dis
retization and the method of solution of the above-mentioned equationsare presented in the following Chapters.2.3.1.1 The wedge elementThe sediment transport and �ow models are based on a mesh 
omprised of triangu-lar elements. A mesh of wedge elements (Fig. 2.8) is used for the three-dimensional40
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oordinates
omputation of �ow. These prismati
 elements are merely extruded from the meshof triangles used for the two-dimensional 
omputation of sediment transport. Bothmeshes make use of the same information regarding element 
onne
tivity and meshpoint lo
ations on a horizontal plane. The same wedge elements are also imple-mented at a later stage in the three-dimensional soil model. The shape fun
tionsof the three-dimensional wedge element are given by (Zienkiewi
z and Taylor,2000):
N1 = 1

2
(1 − r − s)(1 + t) N4 = 1

2
(1 − r − s)(1 − t)

N2 = 1
2
r(1 + t) N5 = 1

2
r(1 − t)

N3 = 1
2
s(1 + t) N6 = 1

2
s(1 − t)

(2.69)Forming the derivatives of the shape fun
tions leads to:
∇N =
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∂N5

∂r
∂N6

∂r
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2


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
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2.3.1.2 Numeri
al integrationThe numeri
al integration of the shape fun
tions (Eq. 2.69) or their derivatives(Eq. 2.70) is performed using the Gauss quadrature method. The desired fun
tionsfor an element are evaluated at the Gauss points. Summing up the single valuesand multiplying them by their weightings yields the integral over the element area.All quadrature rules take the form:

∫ 1

−1

f(r)dr =

NG,r∑

i=1

Wi(ri)f(ri) (2.71)Here, Wi is the weighting fun
tion at the 
oordinate position ri within the ele-ment. Extending the quadrature method to three dimensions leads to the followingexpression (Eq. 2.72):
∫ 1

−1

∫ 1

−1

∫ 1

−1

f(r, s, t) dr ds dt =

NG,r∑

i=1

NG,s∑

j=1

NG,t∑

k=1

Wi(ri)Wj(sj)Wk(tk)f(ri, sj , tk)(2.72)For a wedge element the lo
ation of the Gauss points and the 
orrespondingweightings are as followed (Ratke et al., 1996):
GP1 GP2 GP3 GP4 GP5 GP6 GP7 GP8r 1/3 3/5 1/5 1/5 1/3 3/5 1/5 1/5s 1/3 1/5 3/5 1/5 1/3 1/5 3/5 1/5t √

1/3
√

1/3
√

1/3
√

1/3 −
√

1/3 −
√

1/3 −
√

1/3 −
√

1/3

WiWj -9/32 25/96 25/96 25/96 -9/32 25/96 25/96 25/96
Wk 1 1 1 1 1 1 1 1Table 2.3: Gauss point lo
ations and weightings
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Figure 2.9: Rheologi
al models2.3.2 Constitutive equationsWhile the kinemati
 equations relate strain to displa
ement gradients, and theequilibrium equations relate stress to the applied for
es at the boundary, the
onstitutive equations relate the applied stresses to strains. These equations takeinto a

ount the 
onsidered material and it's physi
al parameters. The 
onstantsin these equations express the behaviour of the material under the a
tion of stress.In the following 
hapter the equations for an isotropi
, elasti
 material arepresented. As anisotropi
 material is not 
onsidered in the present study, theequations for this 
ase are omitted.2.3.2.1 Linear elasti
ityElasti
ity des
ribes the behaviour of a material that undergoes a deformation un-der the a
tion of stress and returns to its original form on
e the stress is removed.43
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Figure 2.10: Linear elasti
 material behaviour
If strain and stress are related by a linear fun
tion, this is referred to as linearelasti
ity and may be des
ribed by Hooke's law (Eq. 2.73). Here, σ is the stressa
ting on the material, ε is the strain and E is the elasti
ity modulus (also knownas Young's modulus). The rheologi
al model (Fig. 2.9) is a spring with a desig-nated sti�ness E. The shear may be 
al
ulated by means of Eq. 2.74, where G isthe shear modulus and γ is the twist angle.

σ = E ε (2.73)
τ = G γ (2.74)Another important material parameter is Poisson's ratio, whi
h des
ribes the
ontra
tion in the lateral dire
tion when a material is extended. In Eq. 2.75, νPis Poisson's ratio, whi
h is the ratio of the longitudinal strain εl to the transversestrain εt.
νP =

εl

εt
(2.75)For an isotropi
 elasti
 material (i.e., an elasti
 material for whi
h the propertiesare the same in all dire
tions) there are only two independent material 
onstants.44
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The relationship between these three moduli are given by the equation

G =
E

2(1 + νP )
(2.76)In a three-dimensional, re
tangular Cartesian 
oordinate system the six equa-tions of Hooke's law take the form (Timoshenko and Goodier, 1951)



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


σ = D ε (2.77)2.3.2.2 Material nonlinearityThe linear elasti
ity des
ribed in the foregoing 
hapter is only valid for a veryidealised 
ase in whi
h the agitating for
es a
ting on a body lie in a parti
ularrange. The behaviour of the material outside this range is no longer linear andfully reversible. Instead, the relationship between stress and strain is a 
ompli-
ated fun
tion 
ontaining 
oe�
ients in the equations that depend on the solution.As the material begins to �ow, parts of the deformations are permanent. Fig. 2.11shows the behaviour of a perfe
tly plasti
 material. The �ow is 
onstant whenrea
hing the 
orresponding 
riti
al stress state is attained. No hardening or soften-ing of the material o

urs. This behaviour is not taken into a

ount in the presentstudy be
ause the 
onsidered (sandy) material does not exhibit these e�e
ts.Considering the pro
ess of nonlinear material behaviour in a �nite element ana-lysis leads to a more 
omplex analyti
al problem than in the 
ase of materiallinearity. Two main solution pro
edures exist for this problem. The �rst methodimplements a on
e-only 
onstru
ted sti�ness matrix whi
h is identi
al to the ma-trix for the linear elasti
 
ase. Nonlinearity is taken into a

ount by iteratively45
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Figure 2.11: Elasti
 - prefe
tly plasti
 material behaviourin
reasing the (external) load ve
tor, whereby ea
h single iteration involves anelasti
 analysis.
ε = εe + εp (2.78)The total strain of a yielding material (Eq. 2.78) is the sum of re
overable strains

εe, whi
h may be des
ribed by the theory of linear eleasti
ity, and the irre
overablestrains εp, whi
h are present after unloading. The latter must be 
al
ulated by amethod suitable for des
ribing plasti
 material behaviour (see Chapter 2.3.2.6).2.3.2.3 InvariantsThe stress tensor expressed in Cartesian 
oordinates is de�ned as




σx τxy τxz

τyx σy τyz

τzx τzy σz





(2.79)This is equivalent to the prin
ipal stress tensor (Eq. 2.80), whi
h de�nes the max-imum and minimum normal stresses in a plane. These are always perpendi
ular46



2.3 Soil model
to ea
h other and oriented in dire
tions in whi
h the shear stresses are zero.

{σ1 σ2 σ3} (2.80)Although the prin
ipal stresses give the magnitude of the stresses a
ting at a point,a disadvantage of this tensor is the need for information on how the 
oordinatesystem is oriented in physi
al spa
e. The use of invariants is therefore often morepra
ti
al than the use of prin
ipal stresses. Invariants are s
alar fun
tions oftensors that have the same values regardless of whi
h 
oordinate system they arereferen
ed to. Using the notation of Smith and Gri�ths (1998), the invariants aregiven by
s = 1√

3
(σx + σy + σz)

t = 1√
3
[(σx − σy)

2 + (σy − σz)
2 + (σz − σx)

2 +

6τ 2
xy + 6τ 2

yz + 6τ 2
xz]

1

2

θ = 1
3
arcsin

(
−3

√
6J3

t3

)

(2.81)
where s denotes the distan
e from the origin of the 
oordinate system to theplane (Fig. 2.12) in whi
h the 
onsidered point is lo
ated, t is the perpendi
ulardistan
e of the point from the spa
e diagonal and θ is the Lode angle whi
h givesthe angular position of the point in the plane. The required J3 and si are de�nedby

J3 = sxsysz − sxτ
2
yz − syτ

2
zx − szτxy

2 + 2τxyτyzτzx (2.82)and
sx = (2σx − σy − σz) /3, etc. (2.83)As the given invariants (Eq. 2.81) have no physi
al meaning, a more expressiveformulation is given by Eq. 2.84. Here, σm is the mean stress and σ̄ is the stress
ontained in the deviatori
 tensor. The invariants in this form are adopted in thefollowing 
hapters.

σm = s√
3

σ̄ = t
√

3
2

(2.84)
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Figure 2.12: Mohr-Coulomb failure 
riterionThe prin
ipal stresses and invariants are related to ea
h other by the followingequations:
σ1 = σm + 2

3
σ̄sin(θ − 2π

3
)

σ2 = σm + 2
3
σ̄sinθ

σ3 = σm + 2
3
σ̄sin(θ + 2π

3
)

(2.85)
2.3.2.4 Failure 
riterionIn order to des
ribe the plasti
 behaviour of soil a 
riterion is required to distin-guish between the material in a state of elasti
 deformation or plasti
 deformations.Several 
riteria have been developed whi
h are suitable for di�erent kinds of mate-rial. They may be distinguished from ea
h other by the form of the yield surfa
e inthe prin
iple stress spa
e. Fig. 2.12 shows the 
riterion of Mohr-Coulomb, whi
hprovides an adequate des
ription of the plasti
 behaviour of sandy soil. As thelatter depends on the �rst and third prin
iple stresses, it takes the form of an48
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irregular hexagonal 
one. Using the fri
tion law

τ = c− σ tanφ (2.86)the Mohr-Coulomb failure 
riterion may be written as
σ1 + σ3

2
sin φ− σ1 − σ3

2
− c cos φ (2.87)where c is the 
ohesion fa
tor, φ is the fri
tion angle and σ1 > σ2 > σ3. Substitu-ting Eqs. 2.85 into Eq. 2.87 leads to the following expression for the Mohr-Coulomb
riterion:

F = σm sin φ+ σ̄

(
cos θ√

3
− sin θ sin φ

3

)
− c cosφ (2.88)The form of the hexagonal 
one is de�ned by kt and kc (Fig. 2.12) (Findeiÿ, 2001).The latter are dependent on the 
ohesion fa
tor and the fri
tion angle, and arede�ned by

kt =
2
√

6 c cosφ

3 + sin φ

kc =
2
√

6 c cosφ

3 − sinφ

(2.89)
When the stress rea
hes the yield surfa
e, the asso
iated plasti
 �ow leads tophysi
ally unrealisti
 volumetri
 expansion or dilation (Smith and Gri�ths, 1998).In this 
ase, the non-asso
iated �ow rule is applied. The plasti
 strain is thendes
ribed by a plasti
 potential fun
tion Q, whi
h is geometri
ally identi
al to theyield fun
tion F . In this 
ase, however, the dilation angle ψ is used instead ofthe fri
tion angle φ. Di�
ulties arise in the determination of the derivative of Eq.2.96. Be
ause the form of the Mohr-Coulomb yield surfa
e is non-
ontinuous, thederivative in Eq. 2.96 be
omes indeterminate. This o

urs when the Lode angle

θ = ±30◦. In order to ensure numeri
al stability the hexagonal surfa
e is repla
edby a 
oni
al surfa
e. When the following 
ondition holds
| sin θ| > 0.49 (2.90)49
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the value for the Lode angle in Eq. 2.88 is repla
ed by θ = 30◦ or θ = −30◦,depending on the sign of θ.2.3.2.5 Body-loadsUsing algorithms with a repeated elasti
 solution, su
h as the 
onstant sti�nessmethod, it is ne
essary to redistribute the loads a
ting on the system in orderto a
hieve 
onvergen
e (Smith and Gri�ths, 1998). The small load in
rementsinvolved in su
h algorithms lead to a system of equations whose solution yieldssmall in
rements of displa
ement (Eq. 2.91). Here, K is the sti�ness matrix and pare the internal and external loads. The index i denotes the number of iterations.

Kδi = pi (2.91)In order to obtain the total strain in
rements of the system the displa
ementsof ea
h element u are extra
ted from the system displa
ement ve
tor δ and then
al
ulated via the strain-displa
ement relationship
∆εi = Bui (2.92)In regions where the stress is beyond the yield surfa
e the total strains in
lude anelasti
 and a vis
o-plasti
 
omponent, as expressed by

∆εi = (∆εe + ∆εvp) (2.93)Considering only the elasti
 strain in
rements ∆εe, the 
orresponding stresses 
aneasily be 
al
ulated using the stress-strain relationship
∆σi = De (∆εe) (2.94)The stress in
rements from Eq. 2.94 are then added to the already existing in
re-ments from the previous load step, and the a
tual stress a
ting on the system maybe used in the failure 
riterion equations. In 
ase of stress redistribution the loadve
tor p (Eq. 2.91) is altered. The load ve
tor itself is 
omprisd of two di�erenttypes of load (Eq. 2.95), namely the a
tual load in
rement pa and the body-load50
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in
rement pb, whi
h 
hange with ea
h iteration.

pi = pa + pi
b (2.95)Commonly used methods for 
al
ulating the body-loads are the initial stressmethod and the method of vis
o-plasti
ity (also referred to as the initial strainmethod). The latter method, whi
h was adopted in the present study, is des
ribedin the following 
hapter.2.3.2.6 Vis
o-plasti
ityTaking a vis
ous or a vis
o-plasti
 material behaviour into a

ount leads to a time-dependent relationship between strains and displa
ements. This may be illustratedby means of a damper with a relaxation time in the rhelogi
al model (Fig. 2.9). Afundamental des
ription of the theory of vis
o-plasti
ity may be found in Perzyna(1966), Perzyna (1971) or Zienkiewi
z and Cormeau (1974). The approa
h ofZienkiewi
z and Cormeau (1974) was used by Smith and Gri�ths (1998) to for-mulate a numeri
al algorithm whi
h is implemented in the present study. Whensimulating and analysing soil strains and displa
ements under saturated 
ondi-tions, a pronoun
ed time-dependen
y exists, whi
h is mainly due to transportpro
esses su
h as the �ow of pore �uid. The 
ases 
onsidered in the foregoing areall under saturated 
onditions with a �ow a
ting on the upper surfa
e of the bed.It is therefore ne
essary to take the time-dependen
y of the pro
ess into a

ount.This is realised in the 
onstitutive equations in the form of vis
o-plasti
ity. As analternative, this pro
ess 
ould be modelled as a two-phase pro
ess involving thesoil and the pore �uid �ow.In the method of Zienkiewi
z and Cormeau (1974) the material is allowed toattain a stress state beyond the failure 
riterion (Fig. 2.12). In 
ontrast to theelasto-plasti
ity, whereby the stress is immediately redistributed within the 
om-putational mesh to for
e the stresses to rea
h the failure surfa
e, stresses beyondthe failure surfa
e are permitted for a small period of time. These are the vis
o-plasti
 strains that are related to the amount by whi
h the yield has been violated51
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by

ε̇V P = F
∂Q

∂σ
(2.96)where ε̇V P is the vis
o-plasti
 strain, σ is the stress and Q = Q(σ, q) is the plasti
potential fun
tion that des
ribes the material behaviour in the 
ase of plasti
ity(e.g. softening, hardening or ideal plasti
ity). The time-dependen
y is taken intoa

ount by summating the in
rements of the vis
o-plasti
 strain rate (Eq. 2.96)at ea
h time step. This may be expressed by

(
δεV P

)i
= ∆t

(
ε̇V P

)i (2.97)and (
∆εV P

)i
=
(
∆εV P

)i−1
+
(
δεV P

)i (2.98)The time step ∆t as derived by Cormeau (1975), is a pseudo time step whi
hvaries for di�erent soil materials in order to a
hieve numeri
al stability. The timestep for �von Mises� materials is
∆t =

4 (1 + νP )

3E
(2.99)and for Mohr-Coulomb materials

∆t =
4 (1 + νP )(1 − 2νP )

E(1 − 2νP + sin2 φ)
(2.100)In order to 
al
ulate the vis
o-plasti
 strain rates the derivatives of the plasti
potential fun
tion with respe
t to the stresses are required. These are expressedby

∂Q

∂σ
=

∂Q

∂σm

∂σm

∂σ
+
∂Q

∂J2

∂J2

∂σ
+
∂Q

∂J3

∂J3

∂σ
(2.101)with the invariant J2 = 1/2 t2. In a numeri
al model the vis
o-plasti
 strain rate(Eq. 2.96) is 
al
ulated a
ording to

ε̇V P = F
(
DQ1 M1 +DQ2 M2 +DQ3 M3

)
σ (2.102)Here, M1σ, M2σ and M3σ are ve
tors that represent ∂σm/∂σ, ∂J2/∂σ and

52



2.3 Soil model
∂J3/∂σ, while DQ1,DQ2 and DQ3 are s
alars equal to ∂Q/∂σm, ∂Q/∂J2 and
∂Q/∂J3, respe
tively (Smith and Gri�ths, 1998; Zienkiewi
z and Taylor, 2000).The body-loads pi

b (see Chapter 2.3.2.5) are then 
al
ulated by
pi

b = pi−1
b +

∑

element

∫
BTDe(δεV P )i d(element) (2.103)The body-loads are a

umulated at ea
h pseudo time step at for all elements that
ontain a yielding Gauss point. This is an iterative pro
ess whi
h is repeated untilno point violates the yield surfa
e within a given toleran
e.2.3.3 Solution strategies2.3.3.1 Constant sti�ness matrixDenoting the previously mentioned equilibrium, strain-displa
ement and 
onsti-tutive equations by their abridged forms as already introdu
ed in Eqs. 2.68, 2.67and 2.77, the three sets of equations are represented byAT

σ = −F
σ = Dε

ε = Au (2.104)where A is the strain-displa
ement operator, σ is the stress tensor, D is the
onstitutive stress-strain relationship, ε are the strains and u the displa
ements.The purpose of the numeri
al model is to 
al
ulate the displa
ements (and hen
ethe strains) for a given stress resulting from gravity and external loads. Theabove-mentioned set of equations is solved by eliminating σ and ε from Eq. 2.104.This is 
arried out by inserting the third equation from the set of Eqs. 2.104 intothe se
ond equation and the result of the latter into the �rst equation:AT
σ = −FATDε = −FATDAu = −F (2.105)The result of this elimination pro
ess is a set of partial di�erential equations53
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whi
h are dependent on the 
ontinuous spa
e variables u,v and w. In order tosolve these equations the 
onsidered body is dis
retized by �nite elements su
h asthe prismati
 element des
ribed in Capter 2.3.1.1. The 
ontinuous variables arethen repla
ed by the appropriate shape fun
tions.

ui = [N1 N2 N3 N4 N5 N6]




ui,1

ui,2

ui,3

ui,4

ui,5

ui,6




= Nu (2.106)
In Eq. 2.106, Nk are the shape fun
tions and i = x, y, z.Dis
retization of the 
ontinuous variables must be taken into a

ount for thestrain-displa
ement operator. Expressing the shape fun
tions in matrix formyields S =



Nu 0 0

0 Nv 0

0 0 Nw


Nu = Nv = Nw = [N1 N2 N3 N4 N5 N6]

(2.107)
After inserting the latter into Eq. 2.105, the last step is to integrate the shapefun
tions (Chapter 2.3.1.2) over spa
e. This leads to the sti�ness matrix for the
onsidered body (Eq. 2.108).MS =

∫ ∫ ∫ ASTD(AS) dx dy dz =

∫ ∫ ∫ BTDB dx dy dz (2.108)The result is a system of linear equations (Eq. 2.109) 
omprised of the sti�nessmatrix, the external loads, and the displa
ement ve
tor, whi
h must be solvedfor the system. The resulting displa
ements may then be used to 
al
ulate the
orresponding strains and stresses within the body.54
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MS u = −F (2.109)

2.3.3.2 Element-by-element te
hniques
Regardless of whether the stability analysis is linear or nonlinear, it is ne
essaryto solve a system of linear equations (Eq. 2.109). This generally takes the formAx = bwhere A is the 
oe�
ient matrix, b is the result ve
tor and x is the ve
tor 
on-taining the unknown system variables. A solution method su
h as the Gaussianelimination method 
ould then be applied to 
al
ulate x. This would require a sys-tem matrix for the entire 
omputational domain, however. Assembling a matrix forthe whole system even using spe
ial storage s
hemes su
h as the skyline te
hnique(Bathe, 1996) would be far too expensive, espe
ially for the three-dimensional
ase. In view of this, the element-by-element te
hnique was implemented as an al-ternative method in the present study in order to ensure that the required memoryspa
e is limited to a manageable size. The algorithm used with this te
hnique isbased on the method of 
onjugate gradients des
ribed by Jennings and M
Keown(1992).The steps outlined in the following equation (Eq. 2.110) are performed k timesin order to minimize the di�eren
e between xk+1 and xk. 55
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uk = Apk

αk =
(rk)T rk

(pk)Tukxk+1 = xk + αkpkrk+1 = rk − αkuk

βk =
(rk+1)T rk+1

(rk)T rkpk+1 = rk+1 + βkpk

(2.110)
where the initial value for p is 
al
ulated a

ording top0 = b−Ax0The ve
tor x is initialized with a value that should be as 
lose as possible tothe �nal solution in order minimize the number of iterations. In all operationsex
ept the �rst in Eq. 2.110 only ve
tors and s
alars are involved. The �rstoperation is a matrix-ve
tor multipli
ation, whi
h is performed a

ording to theabove-mentioned element-by-element te
hnique. By this means, the lo
al produ
tsof the p ve
tor and the element sti�ness matrix i are assembled 
onse
utively toform the global result ve
tor. Summing up the lo
al results leads to the globalresults: u =

∑MS,i bi (2.111)2.3.3.3 Boundary 
onditionsA solution of the matrix given in Chapter 2.3.3.1 also requires the spe
i�
ation ofboundary 
onditions in order to obtain a solution. The spe
i�
ation of boundary
onditions in the 
onsidered experiments is fairly simply in so far as a mesh point56
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is either allowed to move in a spatial dire
tion or not. In the 
ase that a meshpoint is �xed the result is known to be zero. The line and 
olumn in the matrix
orresponding to the node and spatial dire
tion for a non-moving boundary 
on-dition may thus be negle
ted as these are not required for the solution of the other
omponents of the matrix. In the 
ase a boundary node whi
h is allowed to movein a spatial dire
tion, the 
ontributions for this node are retained in the matrixand the system of equations.In pra
ti
e there are two alternative ways of treating the above-mentionedboundary 
ondition for a �xed node. The �rst variant is to eliminate the 
or-responding line and 
olumn from the system of equations so that they are nottaken into a

ount at all. The variable is then simply set to zero. As an alterna-tive the (non-zero) value of a variable may be pres
ribed by adding a large number(e.g. 1020) to the leading diagonal of the sti�ness matrix in the row 
orrespondingto the 
onsidered variable. Additionally, the value of the b ve
tor in that rowmust be modi�ed by multiplying it with the adapted sti�ness term (Eq. 2.112).
(
Mi,j + 1020

)
φ+ [small terms℄ = [pres
ribed value℄ ×

(
Mi,j + 1020

) (2.112)As a result the 
onsidered variable will take the value φ = [pres
ribed value℄,provided the [small terms℄ are negligible 
ompared to the large term added. Thishas the advantage that not only zero but any arbitrary value may be pres
ribedat a given meshpoint.Boundary 
onditions involving gradients of the unknown are not dis
ussed hereas they are not required in the experiments 
onsidered in Chapter 3.2.3.4 In�uen
e of pressure on soil stabilityConsidering wave-indu
ed s
our as outlined in Chapter 3.2 leads to the questionof the in�uen
e of wave pressure loading on soil stability. The soil 
onsists ofsmall parti
les, whereby the stresses resulting from gravity and external loads aretransferred by normal stresses a
ross the parti
le 
onta
t surfa
es. Shear for
es
an only exist as fri
tion between the 
onta
t surfa
es when a normal stress is57
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present. As the soil is saturated, the voids between the soil parti
les are �lledwith water. In a natural environment it is likely that small amounts of gas arepresent in the pores (Tørum, 2007). The gas is 
onsidered to be part of the liquidand 
an be taken into a

ount by altering the 
ompressibility of the �uid (de Grootet al., 2006). Normal for
es are not only transferred by the soil parti
les but alsoby the pore water. This means that the e�e
tive normal stress 
onsists of thetotal normal stress from the soil skeleton and the pore pressures. In the eventthat the pore pressure in
reases and be
omes equal to the total normal stress, thee�e
tive normal stress be
omes zero. Consequently, shear for
es 
an no longerbe transferred. Water and sediment then 
onvert from a former solid state intoa lique�ed state. This liquefa
tion may not only be 
aused by in
reased porepressure but also by a de
rease in the total stress.In a maritime environment the des
ribed behaviour is basi
ally due to twodi�erent e�e
ts. The �rst of these e�e
ts is due to wave-indu
ed momentarypressure variation whi
h propagates into the soil and 
ompresses and de
ompressesthe �uid/gas mixture. The se
ond e�e
t is due to a de
rease in the pore spa
ewith no or only slight drainage of the pore �uid. This 
auses a gradual in
reasein the pore pressure, whi
h results in a residual pressure 
ontribution whi
h maypossibly neutralise the total normal stress. The latter e�e
t is a result of themovement or rearrangement of sediment parti
les in a loose soil. Liquefa
tion 
anonly o

ur if the parti
le size distribution of the soil satis�es 
ertain requirements.Firstly, the soil must be �ne enough in order to prevent drainage of the �uid whilepore pressure is a

umulated, and se
ondly, it must be non-
ohesive in order thatparti
les 
an move and rearrange freely. The range of parti
le sizes whi
h allowsliquefa
tion to o

ur is shown in Fig. 2.13.Momentary liquefa
tion only o

urs if the pore �uid is 
ompressible, i.e. asmall amount of gas must be present in the �uid. Otherwise, the redu
tion inthe e�e
tive stress is insu�
ient to 
ause a momentary liquefa
tion, even dire
tlybelow the soil surfa
e (de Groot et al., 2006). On the 
ontrary, the 
ompressiblenature of the �uid permits the �ow and storage of additional water in the poreswhen the external pressure in
reases (under the 
rest). When the pressure redu
es(under the trough) the additional �uid 
auses an in
reased pressure in the poreswhi
h lowers the soil stability and may possibly lead to total liquefa
tion.58
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Figure 2.13: Risk of liquefa
tion as a fun
tion of parti
le size distribution(Damgaard et al., 2006)Wave-indu
ed liquefa
tion 
aused by a residual ex
ess pore presssure was stud-ied by Sumer et al. (2006b) in a wave �ume. A loosely-pa
ked silty sediment witha parti
le diameter of 0.06mm was pla
ed in the �ume and measurements of thepressure in the soil and the water depth were made. The results of liquefa
tionand 
ompa
tion were extra
ted from videotape re
ordings made during the tests.The observations range from the point in time when waves are introdu
ed up tothe point of soil liquefa
tion and 
ompa
tion and the o

urren
e of ripples on thebed. This time series is shown s
hemati
ally in Fig. 2.14. Dire
tly after the wavesbegin to propagate through the �ume, the pressure in the soil pores begins to rise.The wave-indu
ed 
y
li
 shear stress 
auses the sediment parti
les to rearrange,whi
h results in a de
rease of pore volume and hen
e an in
rease of pore pressure.When the ex
ess pore pressure (= the di�eren
e between the hydrostati
 pressure59
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and the a
tual pore pressure) attains the total normal stress, the soil lique�es andthe water and soil behave like a liquid.

Figure 2.14: Time series of liquefa
tion and 
ompa
tion (Sumer et al., 2006a)
The ex
ess pore pressure in
reases in the verti
al dire
tion with a maximumat the impermeable base represented by the bottom of the sediment box in the
onsidered experiment (
f. Fig. 2.15a). As a 
onsequen
e, a verti
al pressuregradient exists whi
h drives the pore �uid upwards out of the soil. Redu
ing theamount of water in the pores leads to settlement and 
onsolidation of the soilparti
les. This pro
ess begins at the lowest point of liquefa
tion and is followedby an upward movement of the 
ompa
tion front (
f. Fig. 2.15b) until the mud-line is rea
hed. The pro
ess is a

ompanied by a de
rease of pore pressure. The
onsolidation pro
ess additionally leads to a de
rease in the height of the sedimentlayer.The above-des
ribed pro
ess of liquefa
tion was simulated by Dunn et al. (2006)using a two-dimensional numeri
al model. The results were 
ompared with an ana-lyti
al solution as well as with the experiments of Teh et al. (2003). The model60
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Figure 2.15: Pressure distribution (a) and depth of 
ompa
tion front and soil sur-fa
e (b) (Sumer et al., 2006b)
implements Biot's 
onsolidation theory (1941) in order to 
al
ulate pore pressuresand soil deformation. A detailed knowledge of the soil and its parameters isne
essary in order to pres
ribe realisti
 boundary 
onditions for the numeri
almodel. Although these data were available for the analyti
al solution as well asfor the 
onsidered validation experiments, su
h detailed information is rare to �ndfor soil in a natural environment or even for laboratory experiments. As su
h, thenumber of 
ases in whi
h this type of model may be applied is severely limited.61
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2.4 Model 
ouplingHaving des
ribed the individual models and the 
onsidered pro
esses in the fore-going 
hapters, the intera
tion of the latter will now be examined in 
loser detail.The des
ription whi
h follows is valid for all of the 
ondu
ted experiments givenin Chapter 3.All sediment transport and bottom evolution results are based on a �ow periodrepresentative of the �ow regime present at the stru
ture 
on
erned. In the 
aseof a propagating wave this is 
learly the wave period, whereas for a steady �ow,this is the period of a wake separation. The periods are held 
onstant for theentire s
our simulation.Pres
ribing regular waves as a boundary 
ondition is 
arried out by 
al
ulatingthe wave properties by means of a suitable mathemati
al theory, as des
ribed inAppendix A. The imposed waves are of a periodi
 
hara
ter, whi
h means thata stable wave is always bounded by a pre
eding and a following equal wave. The�rst wave imposed 
annot be used as a representative wave as it is not stableand is slowly damped while propagating through the 
hannel. Tests showed thatusually the third imposed wave is stable and gives good results with regard to thefree surfa
e and velo
ities. The �rst two waves are thus negle
ted and are notused for 
al
ulating sediment transport and bottom evolution. These are part ofthe initial phase, as outlined in Fig. 2.16.In the 
ase of a steady �ow the 
urrent is gradually in
reased at the boundaryin order to obtain the �rst result period. After 
al
ulating the bottom evolutionfor the �rst period the �ow result from the previous run is proje
ted onto the newgeometry and then used as the initial value. In the following initial phase of the�ow 
al
ulation the velo
ity adapts to the new (bottom geometry) 
onditions andthe �ow regime is re
onstru
ted. Afterwards, the next representative period of�ow is simulated and is used as input for the bottom evolution.The result period obtained from the �ow model is used repeatedly for 
al
ulatingthe bottom evolution. The number of iterations is limited on the one hand by theextent of bottom evolution, as the 
al
ulated shear stress is only valid for smalldeviations of the bottom geometry. On the other hand, a frequent re
al
ulationof the �ow is not possible as the �ow simulation is 
omparatively time intensive.62
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zBFigure 2.16: Model dependen
iesHow often a �ow result is re-used is de�ned individually for the parti
ular 
ase
on
erned.The resulting bottom geometry is then imported by the �ow model and themesh is adapted to the new 
onditions. Following the initial phase when the �owregime is re
onstru
ted, a new period of �ow results is 
al
ulated.
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3 Numeri
al experiments andmodel validation3.1 Flow-indu
ed s
our3.1.1 AbutmentLo
al s
our at abutments has been studied by Radi
e et al. (2006). A �ow 
hannelmade of plexiglass (Fig. 3.1) with a length of 5.8m, a width of 40
m and a heightof 16
m was used for this purpose. The e�e
tive du
t height after installingroughness elements on the bottom upstream and downstream of the sedimentbasin was 15.5
m. The top of the 
hannel was also 
overed with plexiglass so thatthe 
hannel 
ould be pressurised during the tests. Two di�erent types of abutmentswere used, namely a verti
al wall (Fig. 3.2) and a trapezoidal abutment with sidelengths of 10
m and 8
m. The sediment used 
onsisted of arti�
ial 
ylinders madeof PVC with a median equivalent diameter of 3.6mm. The uniformity 
oe�
ientwas 
lose to unity and the spe
i�
 gravity of the sediment was (ρs − ρ)/ρ = 0.43.A water dis
harge of Q = 18.5 l/s was used in all of the 
ondu
ted experiments.This was 
hosen to mat
h the in
ipient motion of parti
les.In this experiment the 
hannel was 
overed with plexiglass. This was taken intoa

ount in the numeri
al model by freezing the free surfa
e at the given waterdepth and pres
ribing a wall boundary 
ondition. The 
over as well as the sidewalls were assumed to be rough and a small Nikuradse roughness 
oe�
ient waspres
ribed at these boundaries. At the bottom the roughness 
oe�
ient was takento be as three times the median parti
le diameter (ks = 3d50).The numeri
al s
our simulation was performed using di�erent sediment trans-port rate equations. The reason for this is that the results were known to di�er65
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onsiderably depending on the equation used. The results obtained using theequation of Engelund and Fredsøe were found to agre well with the laboratoryresults regarding the s
our depth at the nose of the abutment. The s
our depthattained approximately 20
m in the laboratory as well as in the numeri
al expe-riment (
f. Fig. 3.4 and Fig. 3.3). The simulated geometry of the erosion 
hannelof the right of the abutment was found to be too broad and too short, however(Fig. 3.7). The results obtained using the equation of Meyer-Peter and Mülleron the other hand showed better agreement regarding the s
our shape. The longerosion 
hannel to the right of the abutment was similar to the measured shape.Unfortunately, the s
our depth was underestimated by about 18%.The s
our depth at the 
orner of the abutment was not 
orre
tly predi
ted bythe model regardless of the sediment transport equation used. This is possiblythe result of the 
oarse spatial dis
retisation at this lo
ation, whi
h was optimizedto improve the e�
ien
y of the 
omputational s
heme. The alternate 
al
ulationof �ow and sediment transport may also 
ontribute to this e�e
t as well as thefa
t that an arti�
ial sediment with an unnatural spe
i�
 gravity was used inthe experiments. The sediment transport rate equation and the equations for
al
ulating in
ipient motion were derived from measurements and observationsinvolving natural sediment parti
les with a mu
h higher spe
i�
 gravity. Thismeans that the implemented equations are inappropriate for the arti�
ial sedimentused in the simulations.

66
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Figure 3.1: Flow 
hannel (Ballio et al., 2006)

Figure 3.2: De�nition sket
h of the verti
al wall (Radi
e et al., 2006)
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Figure 3.3: Temporal evolution of measured s
our (Ballio et al., 2006)
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Figure 3.4: Temporal evolution of s
our using the transport rate equation of En-gelund and Fredsøe
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Figure 3.5: Temporal evolution of s
our using the transport rate equation ofMeyer-Peter and Müller
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Figure 3.6: S
our after attaining the equilibrium depth (Radi
e et al., 2006)
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Figure 3.7: S
our isolines after 2h using the transport rate equation of Engelundand Fredsøe
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Figure 3.8: S
our isolines after 2h using the transport rate equation of Meyer-Peterand Müller

Figure 3.9: S
our hole after 2h45m (Ballio et al., 2006)
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Figure 3.10: Resulting s
our after 1800s using the transport rate equation of En-gelund and Fredsøe 73
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Figure 3.11: Resulting s
our after 3600s using the transport rate equation of En-gelund and Fredsøe74
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Figure 3.12: Resulting s
our after 7200s using the transport rate equation of En-gelund and Fredsøe 75
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Figure 3.13: Resulting s
our after 1800s using the transport rate equation ofMeyer-Peter and Müller
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Figure 3.14: Resulting s
our after 3600s using the transport rate equation ofMeyer-Peter and Müller
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Figure 3.15: Resulting s
our after 7200s using the transport rate equation ofMeyer-Peter and Müller
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Figure 3.16: Flow pattern around a 
ylinder (Melville and Coleman, 2000)3.1.2 Verti
al 
ylinderThe �ow around a 
ir
ular 
ylinder (Fig. 3.16) features several e�e
ts that lead toan in
reased shear stress a
ting on the soil surrounding the stru
ture. A boundarylayer �ow has a verti
al pressure gradient whi
h leads to a downward dire
ted�ow on approa
hing a verti
al pile. This results in a horseshoe vortex, whi
h isre
ognised as being one of the main me
hanisms promoting s
our. The �ow isalso 
ontra
ted, whi
h leads to an in
reased velo
ity on both sides of the 
ylinder.Vortex shedding tends to 
onvey the sediment parti
les that have been erodeddownstream away from the pile.The �ow around a pile may be des
ribed by dimensionless parameters. Whereasthe Keulegan-Carpenter number (Eq. 3.3) des
ribes the �ow around a pile in anos
illatory �ow, the Reynold's number des
ribes the �ow regime at a 
ylinderapproa
hed by a steady �ow. This is de�ned by 79
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Figure 3.17: Flow-indu
ed s
our in a laboratory experiment (Eadie and Herbi
h,1986)(left) and s
heme of verti
al 
ross-se
tion (right)
Re =

U∞ D

ν
(3.1)A vortex system does not develop for a Reynold's number below �ve. Within
reasing Reynold's number (>40), vortex shedding o

urs and a vortex streetdevelops (Sumer and Fredsøe, 1997). The presented 
ase of �ow and s
our arounda 
ylinder has a pile Reynold's number of 46000. This means that the wakes arefully turbulent while the boundary layer is still laminar. The thi
kness of theboundary layer a

ording to S
hli
hting (1982) may be approximated by

δ

D
= O

(
1√
Re

) (3.2)where δ is the boundary layer thi
kness and D is again the diameter of the
ylinder. The presen
e of a boundary layer 
auses de
eleration of the �ow 
lose tothe 
ylinder wall, and the resulting velo
ity gradients lead to vorti
es that o

urfor Reynold's numbers greater than �ve.In the 
ase of an erodible soil the above-mentioned �ow e�e
ts lead to intensesediment transport 
lose to the stru
ture. A s
our hole develops with slope anglesapproa
hing the angle of repose. At lo
ations where the slope angle ex
eeds theangle of repose, sediment sliding o

urs. This pro
ess 
ontinues until the slopereturns to a stable 
ondition. An example of su
h a s
our hole is shown in Fig.3.17. High slope angles are espe
ially noti
eable in the upstream part of the s
ourhole where the primary vortex is present.80
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Figure 3.18: Experimental setup (Roulund et al., 2005)The presented 
ase of lo
al s
our around a verti
al pile in a steady �ow is basedon the work of Weilbeer (2001), who 
ompared the results of his numeri
al modelwith the measurements of Roulund (2000); Roulund et al. (2005). In 
ontrast tothe work of Weilbeer, a transport rate in dire
tion transverse to the a
ting shearstress is also taken into a

ount in the present study (see Chapter 2.2.5.1). Thesediment transport rate equation of van Rijn was found to yield the best resultsin the 
ase 
onsidered.Figure 3.18 shows the experimental setup for the above-mentioned laboratoryexperiment. The �ow 
hannel was 9.90m long and 3.60m wide. The water depthwas 40
m and the averaged velo
ity in the 
hannel was given as 46
m/s. The10
m diameter pile used in this experiment was pla
ed in a sand pit 
ontainingsand with a parti
le diameter of 0.26mm. In the numeri
al experiment the meshand numeri
al parameters for the �ow were the same as used by Weilbeer. Theresults of the laboratory experiment are shown in Fig. 3.19. The s
our hole is seento have a round shape while the ripples are indi
ative of live-bed 
onditions.The results of the �ow simulations are 
omparable to the results of Weilbeer(2001). Although the turbulen
e model and numeri
al parameters are identi
al,a di�erent adve
tion method was adopted. In order to redu
e the numeri
aldi�usion SUPG (Streamline-Upwind Petrov/Galerkin) method was used in thepresent 
ase. Fig. 3.20 shows the �ow at a depth of 30
m. The horseshoe vortexat the pile and its e�e
t on the near-bed velo
ities are 
learly evident in Fig. 3.21.81
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Figure 3.19: Flow-indu
ed s
our in the experiments of Roulund et al. (2005)This leads to a �ow whi
h opposes the approa
hing �ow upstream of the 
ylinder.As a 
onsequen
e, high sediment transport takes pla
e in this region. This isprimarily dire
ted away from the pile and leads to fast development of the s
ourhole. The ampli�
ation of the shear stress 
aused by �ow 
ontra
tion is shown inFig. 3.22. In the present the ampli�ed shear stress is about eight times the shearstress in the undisturbed �ow.As already dis
ussed in Chapter 2.2.5, an existing s
our hole has an in�uen
eon the dire
tion of sediment transport. The 
hange in dire
tion in a s
our hole isshown in Fig. 3.23. Due to the a
tion of gravity, sediment transport is less radialand more tangential at the pile. The result of the simulation after two hoursis a s
our hole with a round shape (Fig. 3.24) resembling the shape observedin the presented laboratory experiment (Fig. 3.19). The s
our depth is slightlyoverestimated by the model. The temporal evolution (Fig. 3.25) of the s
ourhole shows that the dynami
s of the pro
ess are not exa
tly modelled espe
iallyduring the initial phase and that the equilibrium depth is attained later than inthe laboratory experiment.
82
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Figure 3.20: Flow around the 
ylinder at d = 0.3m

Figure 3.21: Horseshoe vortex (left) and shear velo
ities (right) in the numeri
alsimulation
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Figure 3.22: Shear stress ampli�
ation fa
tor around the 
ylinder

Figure 3.23: In�uen
e of slope on the dire
tion of sediment transport
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our

Figure 3.24: Simulated s
our after two hours

Figure 3.25: Temporal evolution of simulated s
our
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3.2 Wave-indu
ed s
ourThe �ow around a 
ylinder that is exposed to an os
illatory �ow may be 
ha-ra
terised by a dimensionless parameter, namely the Keulegan-Carpenter (KC)number (Eq. 3.3). In this equation Um is the maximum near bed velo
ity, Twis the period of the os
illatory �ow and D is the diameter of the pile. The KCnumber des
ribes the ratio of the motion of water parti
les to the diameter of the
ylinder. Small KC numbers thus indi
ate that the motion of water parti
les issmall 
ompared to the diameter of the pile. Flow separation does not o

ur forvery small KC numbers.Large KC numbers on the other hand indi
ate a distin
t motion of parti
leswith �ow separation and the possible o

uren
e of vortex shedding. If the �owperiod is long enough, a vortex system similar to the steady �ow 
ase (see Chapter3.1.2) developes at the pile for a maximum of half a �ow period. The �ow andvortex shedding regimes to be expe
ted for di�erent KC numbers may be foundin Sumer and Fredsøe (1997).

KC =
UmTw

D
(3.3)3.2.1 Waves with KC numbers < 6The �rst example of the numeri
al modelling of wave-indu
ed s
our is based onexperiments by Sumer and Fredsøe (2001a) 
arried out in a 10.6m wide and 8mlong wave �ume (Fig. 3.26). A 
ylinder of 1m diameter was pla
ed in a sand pit.The median diameter of the sediment grains was 0.2mm. Waves of di�erent lengthand height were used in the experiments. The KC number was in the range of 0.08to 0.61 for the s
our experiments and 0.34 to 1.1 for the rigid bed experiments.The velo
ities from the numeri
al model were veri�ed by a rigid bed experimentwith a KC number = 1.1 (Fig. 3.27). The velo
ities were measured at a distan
eof 10
m from the 
ylinder surfa
e. A s
our simulation was 
arried out with a KCnumber of 0.61, whi
h represents the highest available value of the KC numberfor whi
h s
our measurements were made. Be
ause the sediment transport ratesand hen
e the bottom evolution were very small, it was possible to repeatedly use86
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Figure 3.26: Wave 
hannel for experiments with KC < 6 (Sumer and Fredsøe,2001a)the �ow results of one wave over twenty minutes of sediment transport simulation.The overall simulation lasted ten hours.The results of the numeri
al experiment for the verifying of the velo
ities areshown in Fig. 3.28. The magnitude of the tangential velo
ity as well as the phaseare in good agreement with the measured results. Considering the radial velo
ityvalues, a small deviation is evident, espe
ially during the �rst half of the waveperiod. This is apparently due to re�e
tions in the simulated wave 
hannel, whi
hwere mainly absorbed in the laboratory 
hannel. As predi
ted, no horseshoevortex was formed. The wave-indu
ed �ow is 
ontra
ted along the sides of the
ylinder, whi
h leads to higher velo
ities in this region. The resulting sedimenttransport is still very small, however, owing to the overall low velo
ities and theabsen
e of a horseshoe vortex. The sediment transport rate equation of Chengwas therefore used in this experiment, as Cheng's equation permits a 
al
ulationof transport rates even when only a very small shear stress is present at the87
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Figure 3.27: Measured velo
ities (Sumer and Fredsøe, 2001a)
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Figure 3.28: Simulated velo
ities
bed. Figure 3.30 shows the resulting s
our pro�le after a simulation of ten hours.Although the s
our depth 
losely agrees with the results from the laboratoryexperiment, the s
our hole pro�le is slightly di�erent. Although the s
our holeis lo
ated downstream of the 
ylinder, it has a di�erent radial extension. Thisis presumably due to the in
reasing 
oarseness of the spatial dis
retisation within
reasing distan
e from the 
ylinder. 89
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Figure 3.29: Measured s
our pro�le (Sumer and Fredsøe, 2001a)

Figure 3.30: Simulated s
our pro�le90



3.2 Wave-indu
ed s
our
3.2.2 Waves with KC numbers > 6
Assuming that the veri�
ation of the �ow model for waves 
arried out in Chapter3.2.1 is also valid for experiments with a mu
h larger KC number, the followingwave s
our simulation based on the experiments of Sumer et al. (1992) was per-formed. In 
ontrast to the previous experiments, a horseshoe vortex is expe
tedover a 
ertain time period during a half wave 
y
le for a KC number > 6.The 10
m diameter pile used in this experiment was pla
ed in 28m long and 4mwide wave �ume. Waves with di�erent KC numbers were used in the experiments.Wave s
our for a KC number of 24 and a pile diameter of 10
m was simulated bythe numeri
al model and the results were 
ompared to the measurements of Sumeret al. (1992). The median diameter of the sediment grains was 0.18mm. The �owresults for a single wave were repeatedly used to 
al
ulate sediment transportover a period of one minute. The �ow over the s
oured bed was subsequentlyre
al
ulated.Waves with a KC number > 6 produ
e a horseshoe vortex (Sumer and Fredsøe,2002) around the stru
ture similar to the vortex obtained for a steady 
urrent.This behaviour is 
orre
tly reprodu
ed by the numeri
al model (Fig. 3.31). Asshown by the results, the vortex is present for less than half of the wave period.Be
ause sediment transport rates in
rease with the developing horseshoe vortex,the shape of the s
our hole is more similar to that given by experiments with asteady 
urrent than the shape obtained for a small KC numbers (KC<6). Thetransport rate equation of van Rijn was applied in this experiment, whereby onewave was used for one minute of sediment transport.Unfortunately, this experiment provides no information 
on
erning the temporalevolution and shape of the s
our hole. Only the �nal s
our hole depth is known.The non-dimensional equilibrium s
our depth (S/D) in the laboratory experimentwas 0.31 for the given KC number of 24, whereas a s
our depth of 0.32 was attainedin the numeri
al simulation. 91
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Figure 3.31: Resulting bottom velo
ities (left) and wave position (right)
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Figure 3.32: Resulting s
our shape3.2.3 Large Wave Channel experimentsIn 2006 and 2007 large-s
ale wave s
our experiments were 
arried out in the LargeWave Channel (GWK) of the Coastal Resear
h Centre (FZK) in Hanover, Ger-many. This wave �ume is 307m long, 7m deep and 5m wide. The diameter ofthe pile used in the investigation was 0.55m (see Figs. 3.33 and 3.34). Be
ausethe model s
ale is 1:10, s
ale e�e
ts regarding the wave-indu
ed �ow and �nesands are minimized (Grüne et al., 2006). The median diameter of the sedimentgrains used in the experiment was 0.33mm. Irregular waves were used in order tosimulate s
our development in a natural environment. The lengths and heightsof the waves were determined from the Jonswap (Joint North Sea Wave Proje
t)spe
trum, whi
h was derived from wave measurements in the North Sea in 1968and 1969. The spe
trum was represented by 500 waves generated by a wavemaker.By repeating this spe
trum twelve times, a total number of 6000 waves were gen-erated for test series 2 and 3. In test series 1 and 4 the total number of waveswas 9000 and 6500, respe
tively. The tests were 
arried out using four di�erent93
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Figure 3.33: Large Wave Channel (Grüne et al., 2006)

Figure 3.34: Large Wave Channel: position of pilespe
trum parameters (see Table 3.1).Velo
ities and free surfa
e levels were measured near the bottom in an undis-turbed area 
lose to the pile. In Table 3.1 d is the water depth, dsb the bottomheight, Hs the signi�
ant wave height and Tp the wave peak period. Theresults shown in Table 3.2 represent the measured data. These were 
al
ulatedfor a full spe
trum (i.e. 500 waves) and afterwards averaged for the 
omplete testseries (i.e. 9000/6000/6500 waves). Hmax is the maximum wave height, H1/3 isthe signi�
ant wave height (i.e. the average of 33% of the highest waves) and Hmis the mean value of all wave heights. Analogous to the wave heights vmax is the94
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our
No d[m] dsb[m] Hs[m] Tp[s]1 4.15 2.0 0.75 5.042 4.15 2.0 0.80 6.663 4.15 2.0 0.90 7.604 4.15 2.0 1.00 8.60Table 3.1: GWK s
our test parametersmaximum measured velo
ity, vm is the mean velo
ity, v1/3 is the average velo
ityof 33% of the highest velo
ities and Tp is the measured peak period.

No Hmax[m] H1/10[m] H1/3[m] Hm[m] vmax[m/s] v1/3[m/s] vm[m/s] Tm[s] Tp[s]1 1.53 1.12 0.85 0.57 1.31 0.82 0.53 4.58 5.142 1.74 1.36 1.03 0.64 1.85 1.04 0.67 5.61 6.593 1.7 1.48 1.21 0.77 1.89 1.21 0.75 6.47 7.684 2.2 1.76 1.4 0.9 2.4 1.44 0.9 7.63 8.94Table 3.2: Results of the GWK s
our tests
Figs. 3.35 to 3.40 show the results of test series 3 after 3000 waves. The s
ourhole attains a depth of approximately 26
m and the deepest part is lo
ated down-stream of the pile. The s
our depth after 6000 waves was 25
m. The deepest s
ourwas measured in test series 4, whereby the equilibrium s
our depth attained 34
mafter 6500 waves (Oumera
i et al., 2007). In test series 2 and 3 the equilibriums
our depth was already attained after approximately 3000 waves.
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Figure 3.35: Test series 3: s
our after 3000 waves (plan view)

Figure 3.36: Test series 3: s
our after 3000 waves (zoom)
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Figure 3.37: Test series 3: s
our after 3000 waves (downstream)

Figure 3.38: Test series 3: s
our after 3000 waves (upstream)
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Figure 3.39: Test series 3: s
our after 3000 waves (side view)

Figure 3.40: Test series 3: s
our after 3000 waves (side view)
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3.2 Wave-indu
ed s
our
Only a part of the full 
hannel length was used in the numeri
al model in orderto redu
e 
omputation time. The wave inlet was positioned 10m in front of thepile and the boundary 
onditions for the numeri
al model were as followed: thethree-dimensional velo
ity �eld and water depth were pres
ribed, whereas thedynami
 pressure was un
onstrained at the wave inlet. A

ording to Sumer et al.(1999) the wave parameters for a regular wave whi
h are representative for a wavespe
trum may be approximated by H = Hs/

√
2 and T = Tz, where Tz is the zeroup
rossing period and Hs is the signi�
ant wave height. Tests showed that inthe 
onsidered 
ase this approximation leads to an underestimation of the s
ourdepth. The wave height H1/3 and the peak period Tp were therefore used forde�ning a representative wave. The �ow results for one wave were used for twohundred waves of sediment transport simulation. The total number of 
ouplingsbetween �ow and sediment transport was hen
e thirty. The sediment transportrate was 
al
ulated using the equation of Engelund and Fredsøe.The results of the numeri
al experiments for test series three are shown in Figs.3.41-3.44. The �rst tests were 
arried out with the sediment ramp in
luded in thenumeri
al model. The results show that the waves be
ome steeper and shorterwhen passing the ramp. As this shape is not stable, the waves return to theiroriginal shape on
e the ramp has been passed. Although this e�e
t is not totallythrough at the pile, it is in
luded in the measurements of Tp. The results ofthe numeri
al simulations show that the di�eren
e in shear stress is small whenthe ramp is in
luded in the numeri
al simulation. In view of this, the ramp wasnegle
ted in the s
our 
al
ulations.The results of the s
our simulation are shown in Figs. 3.43 and 3.44. Theshape of the s
our hole di�ers signi�
antly from the shape obtained in the �umeexperiments. This 
ould be due to the fa
t that a regular wave was used insteadof a wave spe
trum. The deepest point of the s
our hole is lo
ated along theside of the pile rather than downstream. This is where the highest shear stresseso

ur in the numeri
al model. The temporal evolution progresses very rapidly forthe �rst three hundred waves and then slows down. This may be 
aused to someextent by the arrival of sediment from upstream of the pile. This may also be thereason for the de
reasing s
our rate in the temporal range of �ve hundred waves.The 
oupling period might also have an in�uen
e on this model behaviour. The99
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Figure 3.41: Simulated wave seriess
our depth after 3000 waves is underestimated, presumably be
ause the waveparameters are derived from spe
trum parameters and the resulting wave is notintense enough to produ
e the a representative sediment transport obtained in the�ume experiments.
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Figure 3.42: Simulated wave series (side view)
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Figure 3.43: Simulated s
our after 3000 waves

Figure 3.44: Temporal evolution of s
our in the numeri
al simulation
102



3.3 Stability analysis of a s
our hole
3.3 Stability analysis of a s
our holeModelling the bottom by means of a �nite element model provides an opportunityto examine the response of the model to 
hanging geometry as well as to the shearstresses a�e
ting the surfa
e layer. The developing s
our leads to steep slopeswhi
h be
ome unstable when the angle of repose is rea
hed. This behaviour may besimulated with the aid of the �nite element model, thereby permitting an analysisof the lo
ation and depth of instabilities. The bottom surfa
e geometry exists as amesh of triangles. In order to obtain a three-dimensional mesh, a horizontal layerof triangles with the same element 
oordinates as the surfa
e layer is 
reated. Thislayer is lo
ated beneath the lowest surfa
e mesh point at about 20% of the heightof the latter. The spa
e between the two layers is �lled with a 
onstant numberof wedge elements in the verti
al dire
tion. The �nite element model of the soilhas di�erent degrees of freedom at the boundaries. Whereas no displa
ements arepermitted over the bottom layer, the surrounding boundary fa
es 
ylinder nodesare allowed to move in the verti
al dire
tion. Simulations with the �nite elementmodel of the soil were 
arried out in order to analyse slope stability.3.3.1 Flow-indu
ed instabilityThe parameters used in the simulations were Young's modulus E = 1 · 105kN/m2and Poisson's ratio ν = 0.3. The unit weight of the material was given as γ =

13kN/m3. As, a

ording to Krantz (1991); S
hellart (2000), a small amount of
ohesion is present even for granular materials, a 
ohesion fa
tor of c = 0.5kN/m2was assumed. The depth of the s
our hole after one hour of sediment transportwas found to be 12.5
m. The �nite element simulations were 
arried out fromthis point in time. The plasti
 strains pxz are shown in Fig. 3.45. As a resultof experiments by Roulund et al. (2005), sand slides were found to o

ur whenthe slope angle was two degrees greater than the fri
tion angle. Figure 3.46 showsthat for a di�eren
e of two degrees between the slope and the fri
tion angle, strongplasti
 strains o

ur on the upstream as well as on the downstream slope whenthe a
tual slope angle ex
eeds the fri
tion angle. As the solution algorithm doesnot 
onverge under these 
onditions, this is expe
ted to be the regions where most103
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Figure 3.45: Plasti
 deformations for β = φof the sand sliding takes pla
e. As illustrated by Fig. 3.47, the intensity of thedeformations is 
onsiderably less if the fri
tion angle is two degrees lower than thea
tual slope angle. In this 
ase the model 
onverges and regains a stable 
onditioneven though plasti
 deformations o

ur.
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our hole

Figure 3.46: Plasti
 deformations for β = φ+ 2◦

Figure 3.47: Plasti
 deformations for β = φ− 2◦

105



3 Numeri
al experiments and model validation

Figure 3.48: Displa
ement ve
tors
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4 Con
lusionsA three-dimensional �ow model 
apable of simulating �ows with and without afree surfa
e was 
oupled with a model of sediment transport, bottom evolutionand soil stability analysis. The �ow model presented is 
apable of simulating asteady �ow or a propagating wave for the purpose of 
al
ulating the �ow �eld inthe vi
inity of a stru
ture. The solver is based on the Reynold's averaged Navier-Stokes equations whereas 
losure of the set of equations is a
hieved by means ofthe k-ω turbulen
e model. The model was validated using experimental data forsteady �ows and for a propagating wave passing a verti
al 
ylinder. In the 
ase ofa propagating wave the boundary 
onditions were 
al
ulated by �rst order wavetheory or by stream fun
tion theory. The latter implements a numeri
al s
hemefor 
al
ulating wave properties su
h as the free surfa
e and orbital velo
ities forany required order. By this means it is possible to pres
ribe highly nonlinearwaves at the open model boundary.The free surfa
e s
heme was found to be highly appli
able to steady �ows andpropagating waves. The results obtained for the free surfa
e, however, depend verymu
h on the quality of the velo
ity �eld. Depending on the adve
tion s
heme used,small instabilities in the velo
ity �eld result in dis
ontinuities at the free surfa
e.The use of the method of 
hara
teristi
s as an adve
tion s
heme yielded resultswhi
h led to a stable 
al
ulation of the free surfa
e without anomalies. The fa
tthat the vortex system at the 
ylinder was also su�
iently resolved meant that the
al
ulated shear stress at the bottom was suitable for appli
ation in the sedimenttransport model.Using the shear stress at the bottom 
omputed by the �ow model, a sedimenttransport rate may be 
al
ulated and subsequently inserted in the bottom evo-lution equation. The quality of the results of this model is highly dependent onthe equations used for 
al
ulating the sediment transport rate. This is espe
ially107
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the 
ase when simulating s
our, as this is an extreme 
ase with regard to shearstress and hen
e bottom evolution. Good results were obtained using the sedi-ment transport rate equation of Cheng for the 
ase of small shear stresses 
ausedby short waves. In the 
ase of high shear stresses the equation of Engelund andFredsøe was found to be more suitable.The simulation of sliding sediment is ne
essary in order to realisti
ally modelthe bottom geometry. Adjustments for the in
eption of motion and the sedimenttransport rate at slopes improve the original equations in su
h a way that sandsliding is less intensive with regard to the number of iterations required, eventhough it is still ne
essary. The resulting s
our geometry is therefore also 
hara
-terized by this algorithm, whi
h depends on one soil parameter.The 
oupling of �ow and sediment transport was 
arried out by using a repre-sentative period of �ow results for several sediment transport 
omputations. Theperiod and number of re-used �ow results were determined manually in orderto 
ontrol the number of required 
ouplings. The former were 
hosen so as tominimise the bottom evolution during ea
h 
oupling period prior to the next �ow
al
ulation. Computation time, on the other hand, was a limiting fa
tor regardingthe number of realisable 
ouplings.The sediment transport model was enhan
ed by a �nite element model in orderto analyse bottom stability. The horizontal mesh was extended in the verti
aldire
tion to form a three-dimensional mesh 
onsisting of wedge elements. A linear-elasti
 solver was 
ombined with a failure 
riterion and a vis
o-plasti
 method inorder to 
al
ulate non-linear deformations. Several soil parameters as well as thebottom geomtetry are taken into a

ount in this model in order to determine soilstability. By this means it is possible to lo
ate zones of total failure more pre
iselythan would otherwise be possible basd on a 
omparison between the a
tual slopeangle and the fri
tion angle.The des
ribed model was used to simulate di�erent laboratory experiments on�ow and wave-indu
ed s
our. Simulations were 
arried out for a verti
al 
ylinderand an abutment in a steady �ow, whereby the results of experiments on shortand long waves were used to validate the model. Furthermore, the s
our resultingfrom a wave spe
trum was used as a test 
ase for the numeri
al model.108



Simulations involving short waves indi
ate that no horseshoe vortex is formed ata verti
al pile for a Keulegan-Carpenter (KC) number of less than six. Sedimenttransport in the proximity of the stru
ture in this 
ase is solely dependent on wave-indu
ed near-bed velo
ities. This leads to 
omparatively small transport rates. Inthis 
ase the best results were obtained using a transport rate equation that wasnot developed on the assumption of a 
riti
al shear stress for the in
eption ofparti
le motion. The applied transport model permits the 
al
ulation of smalltransport rates even when the shear stress is very small. The results show goodagreement with measurements with regard to both s
our depth and shape.When a long wave with a KC number greater than six passes a pile, the wave-indu
ed �ow is intense enough to produ
e a horseshoe vortex system. This leadsto a situation whi
h is 
omparable to steady �ow 
onditions present for less thanthe length of the trough or 
rest. As sediment transport is dominated by this �owe�e
t, the s
our shape is more similar to the s
our shape produ
ed by a steady�ow than by a wave with a KC number less than six.The �ow-indu
ed s
our simulations indi
ate that the sediment transport rateequation has a signi�
ant in�uen
e on the results. This is very obvious from theresults of the abutment s
our. Using the equation of Meyer-Peter and Müller led togood agreement with measurements regarding the �nal s
our shape, whereas theequation of Engelund and Fredsøe resulted in an equilibrium s
our depth similarto that observed in laboratory experiments. Although the s
our depth was slightlyoverestimated for the 
ase of a 
ylinder in a steady �ow, the 
omputed shape ofthe s
our hole mat
hed the measurements fairly well.The bottom geometry of a �ow-indu
ed s
our hole was used for analysing soilstability. The zones of erosion are then indi
ated by regions where strong plasti
deformations o

ur. In the 
ase of total failure the solution algorithm fails to
onverge as no stable 
ondition 
an be found. Comparing the 
al
ulated erosionzones with the 
riterion of the sand-slide algorithm shows that the results of thetwo approa
hes di�er with regard to the areas a�e
ted. Although the �nite ele-ment stability model is assumed to be more a

urate regarding the determinationof erosion zones, the fa
t that it is three-dimensional pla
es a high burden on
omputation time. In addition, the need for more model parameters than just thefri
tion angle 
annot always be ful�lled. Consequently, the assumption of missing109
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parameters has an arti�
ial in�uen
e on the results.The results of the presented numeri
al simulations of �ow and wave-indu
eds
our were found to be in good agreement with laboratory experiments. Furtherimprovement of the results 
ould be a
hieved by in
reasing number of 
ouplingsbetween �ow simulations and sediment transport 
omputations in order to takea

ount of the 
hanges in the bed geometry more frequently. The use of a �niteelement model of the soil as a 
riterion for erosion and sand-slides seems to beappropriate, espe
ially if the in�uen
e of pressure is also taken into a

ount.
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A Wave theoriesAn os
illatory �ow, su
h as the �ow 
aused by a propagating wave, may be de-s
ribed by means of di�erent 
omplex mathemati
al theories. Although the linearor Airy wave theory is used very extensively, it does have limitations when it 
omesto shallow water or deep water, or waves with high steepness. Nevertheless, thesimpli
ity and expli
itness of the theory is an advantage over more 
omplex the-ories su
h as the 
noidal wave theory of Korteweg and De Vries (1895) or streamfun
tion theory (Dean, 1965). Although the latter must be evaluated with the aidof a numeri
al s
heme, whi
h is a drawba
k in terms of simpli
ity, it is neverthelessvery versatile, as will be shown in Chapter A.2.A.1 Linear wave theoryWaves are des
ribed by several parameters. The main parameters are the lengthand height of the wave and the water depth in whi
h the wave is propagating.Other parameters su
h as wave-indu
ed velo
ities and dynami
 pressure may bederived from the above-mentioned quantities. Figure A.1 shows the s
heme of apropagating wave. The length of a wave is de�ned by the distan
e between two
rests or troughs, respe
tively. The wave height is denoted by H and the waterdepth by h. η(x, t) des
ribes the position of the free surfa
e in spa
e and time.The shape of the illustrated wave is derived from linear wave theory and thereforetakes the form of a sinusoidal os
illation (Eq. A.8). By pla
ing the origin of the
oordinate system at the still water level, the bottom is denoted by z = −h.The basi
 assumptions in linear wave theory are that the �ow is invis
id, theamplitude is small relative to the water depth, and the �ow �eld is irrotational.No shear stress 
an be generated in the �ow itself but only in the proximity of a111
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η(x,t)

L

a

xH

h

Figure A.1: Wave parametersbottom boundary. In shallow water the wave motion may extend to the bottom,thereby generating a small boundary layer with rotational �ow. Be
ause this layeris very thin and its in�uen
e on wave motion is very slight, it is negle
ted in theequation of motion. The solution of the �ow and pressure �eld is given by thepotential fun
tion (Eq. A.1) where φ is the velo
ity potential.
∇2φ =

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0 (A.1)A di�
ulty that arises in the appli
ation of linear wave theory 
on
erns theimposition of boundary 
onditions. These may be expressed in the form of threeequations. In a

ordan
e with Fig. A.1, η is the perturbation from the mean waterlevel. The kinemati
 boundary 
ondition states that a �uid parti
le at the freesurfa
e remainsat this lo
ation (Eq. A.2). Using the velo
ity potential instead ofvelo
ities leads to Eq. A.3.

−∂η
∂t

− u
∂η

∂x
+ w = 0 (A.2)

∂η

∂t
+
∂φ

∂x

∂η

∂x
=
∂φ

∂z
at z = η (A.3)The se
ond boundary 
ondition states that the pressure at the free surfa
e is
onstant. This is referred to as the dynami
 boundary 
ondition. Applying the112



A.1 Linear wave theory

Figure A.2: Wave theories and their appli
ation range (Komar, 1998)Bernoulli equation leads to
∂φ

∂t
+
p

ρ
+

1

2
∇φ · ∇φ+ gη = F (t) (A.4)where p is the pressure at z = η and ρ is the �uid density. Pres
ribing zero �uxat the bottom boundary (Eq. A.5) then results in

∂φ

∂z
= 0 at z = −h (A.5)By 
ombining Eq. A.1 with the boundary 
onditions given by Eqs. A.2-A.5,Stokes assumed that the solution of the �nal equation 
ould be expressed by aFourier series. Linear (Airy) wave theory uses only the �rst term of this series,whi
h leads to Eq. A.6.

φ(x, z, t) =
gH

2ω

cosh k(z + h)

cosh kh
cos(kx− ωt) (A.6)In the following equations θ = (kx − ωt) des
ribes the phase angle, i.e. theposition in spa
e and time where the equations are evaluated. Here, k = 2π/L is113



A Wave theories
the wave number. The angular frequen
y may be 
al
ulated from the dispersionrelationship, whi
h des
ribes the relationship between the wave period T and thewave length L.

ω2 = gk tanh(kh) (A.7)The free surfa
e takes the form:
η =

H

2
cosθ (A.8)The velo
ities and pressures in the verti
al and horizontal dire
tion (Eqs. A.9and A.10) are derived from the �ow potential fun
tion (Eq. A.6). The velo
ityperpendi
ular to the x-z plane ist 
onstantly zero.

u =
πH

T

cosh(k(z + d))

sinh(kd)
cosθ (A.9)

w =
πH

T

sinh(k(z + d))

sinh(kd)
sinθ (A.10)

p = ρg

(
η
cosh(k(z + d))

cosh(kd)
− z

) (A.11)In linear wave theory it is assumed that the boundary 
onditions are ful�lledat the still water level. The equations resulting from this theory are not valid forpositive values of z. Taking this into a

ount, Chakrabarti (1971) developed anexpression (Eq. A.12) for the pressure distribution whi
h solves the problem andful�lls the dynami
 boundary 
ondition at the free surfa
e. Unfortunately, theLapla
e equation is no longer ful�lled at every wave position.
pmod = ρg

(
η
cosh(k(z + d))

cosh(k(d+ η))
− z

) (A.12)Modern measurement te
hniques provide a more pre
ise knowledge of waveparti
le velo
ities. Wheeler (1970) found a similar expression (Eq. A.13) to adaptparti
le velo
ities to measured values. In the so-
alled �stret
hing method� anadditional term is introdu
ed for horizontal velo
ities. Although the boundary114



A.2 Stream fun
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onditions at the free surfa
e are no longer ful�lled, they are still valid at thebottom. Using this stret
hing method also for verti
al velo
ities again leads to asituation where the Lapla
e equation is not ful�lled at every wave position.

umod =
πH

T

cosh
(
k(z + d) d

d+η

)

sinh(kd)
cosθ (A.13)A.2 Stream fun
tion theory

Figure A.3: Best �t for the free surfa
e (Komar, 1998)
Using Airy wave theory to des
ribe an initial wave in a 
hannel is quite 
onve-115
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Figure A.4: Best �t for the free surfa
e in
luding stream fun
tion theory (Komar,1998)
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A.2 Stream fun
tion theory
nient owing to its expli
it 
hara
ter and easily 
omprehensible formulation. Un-fortunately, the theory is only valid when dealing with small amplitude waves su
has those des
ribed in Chapters 3.2.1 and 3.2.2. For waves in very shallow or deepwater or for waves with a high steepness, the appli
ation of other theories is moreappropriate. The reason for this is the poor �t of the dynami
 free surfa
e bounda-ry 
onditions of the Airy theory in su
h 
ases (Fig. A.3). As a 
onsequen
e of thelatter, the 
al
ulated waves are unstable. In the 
ase of shallow water the 
noidaltheory (Korteweg and De Vries, 1895) and the solitary wave theory (Boussinesq,1872) yield good results for wave kinemati
s, whereas in deep water Stokes' theoryof higher order proves to be more appli
able (Figs. A.2 and A.3).Extending the above-mentioned theories to a higher order be
omes quite di�
ultand in
onvenient. The stream fun
tion wave theory developed by Dean (1965)over
omes these problems. The underlying equations of this theory, whi
h maybe evaluated numeri
ally to any required order, may be represented by a s
alarfun
tion whi
h is easy to handle and permits a 
al
ulation of the velo
ity ve
tor�eld.Eqs. A.14 and A.15 represent the linear form of the velo
ity potential andthe stream fun
tion, respe
tively. The velo
ity �eld may be determined from thepotential ψ of an irrotational and in
ompressible �ow. A stream fun
tion exists forall two-dimensional �ows (Dean and Dalrymple, 1984). These fun
tions des
ribethe �ow rate in the longitudinal and transverse dire
tion, respe
tively.

φ(x, z, t) = −H
2

g

ω

cosh k(h + z)

cosh kh
sin(kx− ωt) (A.14)

ψ(x, z, t) = −H
2

g

ω

sinh k(h + z)

cosh kh
cos(kx− ωt) (A.15)The fa
t that the isolines of 
onstant velo
ity potential and 
onstant streamfun
tion are orthogonal means that the produ
t of the gradients of both fun
tionsis zero:

∇ψ · ∇φ = 0 (A.16)This is also evident from Eqs. A.14 and A.15, whi
h have a phase shift of π/2.117
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With regard to velo
ities, the stream fun
tion and the velo
ity potential arerelated by

u = −∂φ
∂x

= −∂ψ
∂z

w = −∂φ
∂z

= −∂ψ
∂x

(A.17)In order to obtain an expression for the stream fun
tion whi
h is not timedependent, the 
oordinate system is moved with the wave 
elerity C = L/T . Thisimplies that the wave form travels without a 
hange of shape (Dean, 1965). Thesteady version of the stream fun
tion is therefore
ψ(x, z) = Cz − H

2

g

ω

sinh k(h+ z)

cosh kh
cos kx (A.18)The boundary 
onditions for the stream fun
tion are basi
ally the same as thoseof the Airy wave theory. Firstly, the Lapla
e equation must be ful�lled throughoutthe �uid (Eq. A.19).

∇2ψ = 0 (A.19)Negle
ting the pressure at the free surfa
e, and without time dependen
y, thedynami
 free surfa
e boundary 
ondition is
1

2

[(
∂ψ

∂z

)2

+

(
∂ψ

∂x

)2
]

+ gη = QB (A.20)where QB is the Bernoulli 
onstant.The kinemati
 free surfa
e boundary 
ondition states that the motion of thewater surfa
e must be 
onsistent with the velo
ities of the water parti
les at thefree surfa
e (
f. Eq. A.3). Again without the time dependen
y the boundary
ondition may be written as
∂ψ

∂x
= − ∂ψ

∂z

∂η

∂x
(A.21)As no �ux is permitted through the bottom boundary, the following holds:118
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tion theory
∂ψ

∂x
= 0 at z = −h (A.22)Besides the boundary 
onditions, a representation of the stream fun
tion whi
hpermits an evaluation of any order is required. The generalized form of the streamfun
tion of N th order in a steady rendered 
oordinate system takes the form

ψ(x, z) = Cz −
N∑

n=1

X(n) sinh {nk(h+ z)} cos nkx (A.23)In order to obtain the �rst order solution (
f. Eq. A.15) the 
oe�
ient X(1) is
X(1) = −Hg

2ω

1

cosh kh
(A.24)The kinemati
 boundary 
ondition is ful�lled by default when applying streamfun
tion theory, as it states that the free surfa
e must be a streamline. In order toalso ful�l the dynami
 boundary 
ondition, the X(n) 
oe�
ients must be 
hosen insu
h a way as to ensure that this 
ondition is satis�ed. This is a
hieved numeri
allyby splitting the free surfa
e of the wave into I dis
rete points. The dynami
boundary 
ondition is then evaluated at ea
h point I, thereby yielding a lo
alvalue of the Bernoulli 
onstant QBi

(Eq. A.25) whi
h must be equal to the global
onstant QB.In order to 
al
ulate the values of QBi
, the X(n) 
oe�
ients must be known.Otherwise the velo
ities and the free surfa
e in Eq. A.25 
an not be determined.This results in an iterative pro
edure in whi
h the X(n) 
oe�
ients and the QBi
onstants are 
al
ulated alternately until the boundary 
ondition is satis�ed.

QBi
=

(
∂ψ

∂z

)2

i

+

(
∂ψ

∂x

)2

i

2
+ gηi = QB (A.25)With ea
h iteration the boundary 
ondition error de
reases. For an exa
t so-lution this error would be zero. In the present solution s
heme the iteration isrepeated until the error is su�
iently small. A measure for the error is E1 whi
his des
ribed by 119
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E1 =

2

L

∫ L/2

0

(QBi
−QB)2 dx (A.26)where

QB =
2

L

∫ L/2

0

QBi
dx (A.27)The 
oe�
ients resulting from the iterative pro
edure must lead to a zero meanof the free surfa
e η(x):

(2/L)

∫ L/2

0

η(x) dx = 0 (A.28)In order to des
ribe the boundary 
onditions in a numeri
al model using theresults of stream fun
tion theory, the length of the wave L and the value of thestream fun
tion ψ(x, η) must be determined. As des
ribed by Dean and Dal-rymple (1984), this is a
hieved by applying the method of Lagrange multipliers(Hildebrand, 1965). The obje
tive fun
tion
Of = E1 +

2λ1

L

∫ L/2

0

η(x) dx+ λ2

[
η0 − η

(
L

2

)
−H

] (A.29)in whi
h λ1 and λ2 are the Lagrange multipliers, must be minimized. This isa nonlinear equation whi
h is solved by expanding the equation with a trun
atedTaylor series:
Oj+1

f = Oj
f

N+2∑

n=1

∂Oj
f

∂X(n)
∆Xj(n) (A.30)The value of ∆Xj(n) represents a slight 
orre
tion of Xj(n) in the jth iterationstep. Minimizing the expanded obje
tive fun
tion leads to a set of linear equationswhi
h may be solved using a suitable linear equation solver. Taking the 
orre
tionof ∆Xj(n) into a

ount in the next iterative step leads to

Xj+1(n) = Xj(n) + ∆Xj(n) (A.31)This pro
edure is repeated until the result of the obje
tive fun
tion Oj+1
f is su�-
iently small.
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Nomen
latureGreek
β A
tual bottom slope
η Free surfa
e position
γ Unit weight
γij Shear strains
ν Vis
osity
νP Poisson's ratio
νt Turbulent vis
osity
ω Turbulent dissipation
φ Criti
al slope angle
ρ Density
σ Normal stress
σ Stress
τB Bottom shear stress
τb,cr Criti
al bed shear stress
τij Shear stress
θ Shields parameter 121
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θcr Criti
al Shields parameter
ε Turbulent dissipation
εi Extensional strainsLatin
c Cohesion
D∗ Sediment grain parameter
dm Sediment mean diameter
d50 Median grain diameter
E Young's modulus
G Shear modulus
g Gravity
h Water depth
Hs Signi�
ant wave height
H1/3 Average of 33% of the highest waves
Hmax Maximum wave height
k Turbulent kineti
 energy
ks E�e
tive grain roughness
KC Keulegan-Carpenter number
L Wave length
Ni Shape fun
tion
p Pressure
qs Sediment �ux122
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tion theory
S Free surfa
e
s Sediment grain size
T Wave period
t Time
Tp Wave peak period
Tw Wave period
Tz Zero up
rossing wave period
u Flow velo
ity
u∗ Shear velo
ity
ub Sediment parti
le velo
ity
ui Displa
ement ve
tor
Um Near bed velo
ity
v1/3 Average of 33% of the highest velo
ities
vmax Maximum velo
ity
Wi Weighting fun
tion
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