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Abstract i

Abstract

The description and numerical investigation of multi-phase flow processes in deformable
solids of granular or skeletal structure are of great interest for geotechnical engineering.
Geothermal applications as well as predictions of long term behavior of barrier systems
often require the fully coupled thermal, hydraulic and mechanical modeling.

The subject of this work is the theoretical description as well as the numerical treatment
and modeling of thermally affected fluid-solid problems in fully or partially saturated
porous media without consideration of phase changes.

An overview of the Theory of Porous Media is given. Based on the geometrically linear
theory the required kinematical quantities are derived and the characteristic properties
are explicated in the context of the mixture theory. Within this approach the coupled
processes are described and presented in form of coupled partial differential equations.

The numerical realization in the framework of the finite element method is explained and
presented in detail for selected formulations of coupled problems. The resulting system
of partial differential equations is solved by the finite element method. The correctness
of the numerical realization of process couplings is proven by appropriate validating
examples.

For a complete coverage of the often non-linear behavior of both fluid and solid phase,
along with the couplings, an extensive description of the constitutive behavior is nec-
essary. Thus, some selected constitutive models and their algorithmic formulations are
presented. The correct implementation is demonstrated as well.

Due to the new requirements, the finite element code RockFlow has been extended in
several areas, including linear and non-linear solid mechanics, process couplings and
their control as well as the new graphical user interface. Nature and extent of the new
developments are explicated and presented in detail.

The applicability of the developed algorithms is demonstrated by several engineering
applications. The results are consistent to those of other international research groups
working on the extension coupled simulation tools for multi-field problems. This work
is a contribution to the continuously covered but still broad field of multidisciplinary
modeling and particularly considers the modeling of geotechnical problems.

Keywords: Theory of Porous Media, coupled geotechnical modeling, finite element method.



ii Zusammenfassung

Zusammenfassung

Die Beschreibung und die numerische Analyse von mehrphasigen Strömungsprozessen in
deformierbaren Festkörpern von granularer oder skelettartiger Struktur ist von großem
Interesse in der Geotechnik. Geothermische Anwendungen oder Vorhersagen zum Lang-
zeitverhalten von Barrieresystemen erfordern oftmals eine vollständig gekoppelte ther-
mische, hydraulische und mechanische Modellierung.

Gegenstand dieser Arbeit ist die theoretische Beschreibung sowie die numeri-
sche Behandlung und Modellierung von thermisch beeinflussten gekoppelten Fluid-
festkörperproblemen in voll- und teilgesättigten porösen Medien ohne Berücksichtigung
von Phasenübergängen.

Es wird zunächst ein Überblick über die Theorie Poröser Medien gegeben. Basierend auf
geometrisch linearer Theorie werden die benötigten kinematischen Größen hergeleitet
und die notwendigen Kenngrößen im Rahmen der Mischungstheorie erläutert. Darauf
aufbauend werden die gekoppelten Prozesse beschrieben und in Form gekoppelter parti-
eller Differentialgleichungen dargestellt.

Ihre numerische Umsetzung im Rahmen der Finite-Elemente-Methode wird erläutert und
anhand ausgewählter gekoppelter Problemformulierungen im Detail dargestellt. Das re-
sultierende System von stark oder schwach gekoppelten partiellen Differentialgleichungen
wird mit Hilfe der Finite-Elemente-Methode gelöst. Die korrekte numerische Umsetzung
der Prozesskopplungen wird anhand geeigneter Validierungsbeispiele belegt.

Zur vollständigen Erfassung des meist nicht-linearen Verhaltens der flüssigen als auch der
festen Phase sind neben den Kopplungen umfangreiche Materialbeschreibungen notwen-
dig. Es werden daher ausgewählte konstitutive Modelle dargestellt, deren algorithmische
Formulierung erläutert und ihre korrekte Implementierung demonstriert.

Aufgrund der neuen Erfordernisse ist das Finite-Element-Programm RockFlow in
zahlreichen Bereichen erweitert worden. Dazu zählen die lineare und nicht-lineare
Festkörpermechanik, die neuen Prozesskopplungen und ihre Steuerung sowie die gra-
phische Benutzeroberfläche. Art und Umfang der neuen Erweiterungen werden erläutert
und ausführlich dargestellt.

Die Anwendbarkeit der entwickelten Algorithmen wird anhand mehrerer Ingenieursan-
wendungen demonstriert. Die erzielten Ergebnisse stehen dabei im Einklang mit denen
anderer internationaler Forschungsgruppen, die Simulationsprogramme für gekoppelte
Mehrfeldprobleme nutzen und weiterentwickeln. Diese Arbeit stellt somit einen Beitrag
zum beständig weiter erschlossenen aber noch immer umfangreichen Feld der multi-
disziplinären Modellierung dar und berücksichtigt dabei insbesondere die Modellierung
geotechnischer Probleme

Schlagworte: Theorie Poröser Medien, gekoppelte geotechnische Modellierung, Finite-

Elemente-Methode.
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und die Teilnahme an weiteren internationalen Kongressen initiiert.



iv Vorwort

Ohne die Mitwirkung von wissenschaftlichen Hilfskräften wären wohl zahlreiche Klei-
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Chapter 1

Introduction

1.1 Motivation

The range of applications of numerical modeling in the field of water resource and waste
disposal management is continuously increasing. A security relevant aspect is to satisfy
the need to predict environmental impacts which are often affected by a compound of
several processes. Additionally, the interaction of these processes might be very complex.

In order to simplify the problem of coupled processes in a correct way, the evaluation of
the degree of process interaction is of substantial interest. With this knowledge, either
separate analysis of single processes or coupled analysis of only few processes arising in
a coupled multi-field problem can successfully deliver equivalent results.

However, in most cases, a reliable analysis can only be achieved if the overall problem
is treated with all its complex processes and interactions. Consequently, the analysis of
coupled multi-field problems arising in engineering sciences is a challenging application
of the finite element method.

1.2 Problem, objectives and approach

1.2.1 Problem

With the use of averaging strategies a deformable porous medium can be described by
a continuum approach called Theory of Porous Media (TPM). The pores may be occu-
pied by a single fluid (fully saturated single-phase flow) or by multiple fluids (partially
saturated multi-phase flow). In both cases the approach results in a coupled formula-
tion. The solving of this multi-field problem requires that both disciplines fluid and solid
mechanics are considered.

Some applications comprises geothermal processes. The heat transport processes must
be described as a conductive process in the solid and as a conductive/advective process
in the liquid phase. Thermal strains have to be taken into account in the solid phase

1



2 1.2 Problem, objectives and approach

as well as thermal expansion of the fluid phase. Usually, if the temperature changes are
moderate, these processes can be incorporated in an isothermal approach that means
that for example the thermal expansion coefficients can be assumed to be temperature
independent. An isothermal approach also implies that no phase changes occur.

The fate and the behavior of substances in the environment is of great interest and
sophisticated models are available. Physical as well as chemical processes might affect
the integrity of Engineered Barrier Systems (EBSs). Thus, matter transport is of special
interest in Performance Assessment (PA) studies. Additional geochemical modeling can
improve the predictions of possible impact.

A thermo-hydro-mechanically coupled model has to be set up, also providing matter
transport, and giving the opportunity of extensions towards geochemical modeling, in
order to achieve an integral simulation tool for geotechnical investigations.

1.2.2 Objectives

The aim of this work is the numerical simulation of initial boundary value problems
(IBVPs) based on the Theory of Porous Media (TPM). Soil mechanical problems are of
main interest. Related topics like matter and heat transport in subsurface or engineered
barrier systems broaden the range of intended types of applications. The resulting multi-
field problem mainly is thermo-hydro-mechanically (THM) coupled while the conservative
matter transport (C) can be treated as an add on.

Couplings. The realization of process couplings is an essential target of this work. A
most natural concept is recommended that automatically activates couplings if the con-
cerning process exists. In order to perform a step-by-step model approach an individual
setting of the coupling specification should be provided.

Time scales. In a thermo-hydro-mechanical formulation two time dependent processes
(fluid flow and heat transfer) are directly coupled to the quasi static process of structural
mechanics. Caused by coupling effects within the multi-field problem its behavior usually
differs significantly from that of the containing individual problems. Depending on the
material properties, the coupling of two steady state processes can result in a transient
multi-field problem (e.g. consolidation).

Non-linearities. The combination of rate-independent plasticity and partially satu-
rated flow in the framework of the TPM has given rise to challenging research in the last
decade.

Couplings result in further non-linear effects. Density dependencies can occur in the fluid
phase due to dissolved substances or thermal gradients. In partially saturated fluid flow
the capillary pressure as well as the relative permeability are usually highly non-linear
functions of the saturation.
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At high temperatures, moisture transport is an important non-isothermal process in
partially saturated media. Here, a non-linear interaction of the temperature field with
the pore pressure and saturation field has to be incorporated. Transitions between solid,
liquid, and gaseous phases typically involve large amounts of energy compared to the
specific heat. A phase change is accompanied by a relatively quick release or demand
of energy compared to the specific heat. The latent heat of fusion or the latent heat of
vaporization, for example, leads to a highly non-linear process. This work prepares the
basis for the implementation of these non-isothermal effects.

Process sensitivities. A sufficient understanding of a system and its main processes is
meaningful in many disciplines, especially if long-term processes are involved. The anal-
ysis of sensitivities is essential for the assessment of the long-term safety of repositories
or underground storage sites. Public waste disposal authorities or Nuclear Regulatory
Commissions (NRC) require the supply of decision criteria as they have to ensure the
long-term safety performance of repositories for high-level radioactive waste. Thus, the
classification of processes and couplings according to their importance is a significant
result of the application of coupled numerical models to be developed.

Applicability. Coupled process modeling is requested in the international project
DECOVALEX (acronym for DEvelopment of COupled models and their VALidation
against EXperiments in nuclear waste isolation). One of the objectives is to study the
influence of process interactions. Therefore, a strategy has to be developed that gives the
opportunity to perform a process oriented implementation in combination with a control
concept which allows the selective activation of processes. Furthermore, it is useful to
consider selectable process couplings in order to accomplish sensitivity analyses.

Data management. The simulation of multi-field problems requires a user-friendly
input and output management. A graphical user interface and the graphical visualization
of simulation data implicates valuable assistance for both the developers and the users.

1.2.3 Approach

1.2.3.1 Starting point

The numerical algorithms required for the performance of the applications presented in
this work have been implemented in the finite element code RockFlow. The basis for
the development has been RockFlow 3.8. A historical overview of previous development
stages of this code is presented in Sec. 1.3.

The range of applicability of the former version RockFlow 3.8 is single phase as well as
multiphase flow in combination to matter or heat transport. Density dependent flow
and reactive transport modeling is available as well. Occurring non-linearities are solved
in an iterative Picard scheme. In this version of RockFlow, the solution of interacting
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processes is performed in a partitioned approach, accompanied by a limited range of
stability.

1.2.3.2 Established development

Single or multiple process strategy. The processes themselves are implemented
independently in an object-oriented way and finally arranged in an integrating model
which provides all the necessary data objects. An essential aspect of this strategy is
the fact that the resulting RockFlow model is able to solve the coupled problem in a
single-process or multiple-process approach. That means that processes as well as their
couplings are selectable.

This strategy of object-oriented implementation of all processes is the basis to perform
coupled analyses of multi-field problems or separate analyses of single problems. Thus,
the significance of different kinds of couplings or dependencies of material properties can
be estimated.

Modules and features. The main improvements of the finite element code RockFlow
are the finite element set-up for mechanical analysis, its coupling to the heat transport
part for thermo-elastic analysis and finally its coupling to fully or partially saturated fluid
flow. Some further parts of improvements required for coupled analysis in RockFlow are
listed below. They include

• the quadratic element types in two or three dimensions,

• the increase of degrees of freedom per node,

• the incorporation of new coupled finite element formulations and the combination
to existing formulations in the framework of a new model named THMplus ,

• the control concept for this THMplus model,

• the direct solving strategy of the coupled formulations,

• associated with the required data objects,

• and accompanied by coupled and non-linear material formulations.

Graphical user interface. The achievement of user-friendly finite element software
becomes even more important, when more processes come into play. The resulting
increase in input data demands for an overall insight into the model’s input data and
its results. A graphical user interface was set-up in order to meet these demands. With
this interface the structure and the definition of the input data is documented and made
accessible for any user. The finite element results can be visualized in an controllable
simulation sequence.
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1.3 The finite element code RockFlow

At the Institute of Fluid Mechanics and Computer Applications in Civil Engineering the
development of numerical models for the simulation of fluid flow and solute transport
processes in porous and fractured porous media started in the mid eighties. These
developments were performed and documented by Wollrath (1990) [107], Kröhn (1991)
[60], Helmig (1993) [45], Shao (1994) [92] and Lege (1995) [63]. During this phase
the first version of the program system RockFlow appeared in the language Fortran
77. It consisted of independent modules for the numerical analysis of incompressible or
compressible flow (SM/GM), solute transport (TM) and density driven flow. Later these
modules were combined in a single finite element code and called RockFlow models.

In the mid nineties, the need of adaptive algorithms especially for advective transport
processes became obvious. Thus, the next meaningful step in the history of RockFlow
was the development of an adaptive transport module (aTM) by Schulze-Ruhfus [91]
and Barlag [1] in 1997. As a basic system for h-adaptive methods it was the founda-
tion for further developments. Analogously, these developments were the beginning of
the transition phase towards new object-oriented programming techniques provided by
ANSI-C.

The third step of the RockFlow development was initiated in the late nineties. It took
place in alliance with the above mentioned achievements of the development of an adap-
tive transport module in ANSI-C. Within this phase the former modules were combined
in an model-oriented structure. The sub-division of processes finally was the basis of
RockFlow Version 3.0. It was developed with the strict usage of dynamic data struc-
tures and object-oriented methods, see for example Kolditz et al. (1998) [57].

During this period of RockFlow development coupled models for multiphase and density
driven flow and reactive transport modeling were created by Thorenz [101] and Habbar
[41], respectively. Both models were embedded in a grid adaptive frame for coupled
processes developed by Kaiser [50]. In 2001, these developments led to RockFlow 3.8
which finally marks the starting point of the work at hand.

1.4 Outline

The work at hand is structured as follows:

Chapter 1 Introduction. The motivation of processing coupled modeling, the arising
objectives and the approach for achieving the aims of the work at hand are given in this
chapter.

Chapter 2 Theory of Porous Media. The Theory of Porous Media which is the theo-
retical basis of the formulation of coupled problems in porous media is outlined. After
a short historical review, the kinematics of porous media and the resulting conservation
equations are presented.
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Chapter 3 Formulations of coupled problems. The governing equations representing
saturated and unsaturated flow processes in porous media are summarized.

Chapter 4 The finite element method. This chapter is devoted to the finite element
method which is used for the numerical solution. The general approach of a finite element
formulation is given. Further aspects on the numerical treatment of coupled transient
problems are addressed in detail.

Chapter 5 Coupling phenomena and associated numerical aspects. Coupling phenom-
ena arising in geotechnical applications are introduced in this chapter that also gives an
insight into the strategy of numerical and computational solution strategies.

Chapter 6 Constitutive modeling. The theory of elasticity, elasto-plasticity and un-
saturated fluid flow is introduced with special attention to constitutive modeling of
geotechnical material and with respect to hydraulic-mechanical coupling.

Chapter 7 Implementation. The strategy of implementing coupled process formula-
tions is presented here including the computation methods and software concepts for
solving coupled thermo-hydro-mechanical problems and integrating the finite element
code into a computational framework for graphical visualization.

Chapter 8 Verification benchmarks. Separated into well-defined groups of process in-
teraction verification benchmarks and corresponding analytical solutions are presented.

Chapter 9 Applications. Different applications of particular scientific and engineering
aspects are reflecting the applicability of the numerical implementation.

Chapter 10 Conclusions and recommendations. The final chapter discusses the con-
tributed achievements and sketches perspectives of future research activities.



Chapter 2

Theory of Porous Media

The most incomprehensible thing about
the world is that it is comprehensible.

Albert Einstein (1879 - 1955).

2.1 Introduction

Geomaterials like soils or rocks as well as artificial material like concrete or buffer ma-
terials for technical applications consist of granular and brittle materials. They have a
porous skeleton. The pores are filled by a single or by multiple fluids. The behavior
of the aggregate body is defined by the properties of its solid and fluid constituents.
The structure of both the solid skeleton and the boundary layers of the fluids is usually
not known. Thus, an averaging process is necessary to build up a continuum model.
A macroscopic approach is the Theory of Porous Media (TPM) based on the classical
mixture theory of superposed continua. The microscopic composition of the mixture is
described by a structural quantity, the volume fraction.

In this work a geometrically linear three-phasic formulation of a deformable porous
medium is derived. The governing equations of the resulting hydraulic-mechanically
coupled problem are summarized in Chapter 3. The used multi-phase flow formulation
is an approximation which assumes that the gaseous phase remains at atmospheric pres-
sure. The transport of heat or solute matter are incorporated in the formulation but not
addressed in detail. Thermal effects are restricted to the isothermal case. In the pre-
sented formulation non-linear behavior of solid and liquid phase are considered. Linear
or non-linear processes can be coupled by linear or non-linear couplings. (see Chapter 5).

7
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2.2 Overview of the historical development

First important developments of the Theory of Porous Media became manifest in the
1930s by Fillunger and Terzaghi. Their work was concerned with uplift, friction, cap-
illarity and effective stress. Thereby they introduced the concept of volume fraction in
a framework of a liquid-saturated rigid porous solid. The first ideas of effective stress
go back to Terzaghi who finally stated a mathematical formulation of the consolidation
process [99, 100]. Fundamental equations of the porous media theory were developed
by Fillunger in 1936 who introduced a two-phase formulation consisting of a pore-water
moving in a deformable porous skeleton of soil (see [38]).

The theory of consolidation developed by Terzaghi was generalized and extended to the
three-dimensional case by Biot [6]. He also investigated elastic waves in poroelastic media
[7, 8]. In 1957, Biot and Willis [9] determined and interpreted the elastic coefficients, for
example the coefficient describing the interaction of fluid pressure and volumetric strain
of the porous medium.

The modern Theory of Porous Media was founded by Bowen in the 1980s. He derived
a two-phase model with incompressible and compressible constituents, respectively (see
[14, 15]). Formulations of a modern treatment of the TPM are given by de Boer and
Ehlers [24], Ehlers [31] or Ehlers and Bluhm [34]. For the historical development of
fluid-saturated porous media the reader should refer to de Boer [23].

In the development of the recent years the theory of porous media has been extended to
dynamically deforming as well as to thermally influenced porous solids, see for example
Schrefler and Scotta [88] or Lewis and Schrefler [64].

The existence of heat in multi-phase flow processes causes the transfer of energy between
the fluid phases. In case of high temperatures non-isothermal approaches are necessary.
In 2002, Class et al. [21, 20] present numerical simulations of non-isothermal multi-phase
flow in rigid porous media.

2.3 Kinematics

2.3.1 Kinematics of a body

Definition 2.1. Reference and current configuration. Let ΩR ⊂ R
ndim be the

reference configuration of the material body B, where ndim is the space dimension. The
domain is bounded by a smooth boundary ∂ΩR.

Definition 2.2. Material and spatial coordinates. Each material point P ∈ B
has a reference and current localization, PR and P , respectively. According to these rep-
resentations material coordinates X and spatial coordinates x are introduced as shown
in Fig. 2.1.
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e1

e3

e2

B

ΩR

∂ΩR

Ωt

P

PR
P

φR(P) φt(P)

X

x

x = XR(X, t)

Figure 2.1: Motion of a material body in a Euclidian space, represented in relative to a
frame of reference.

Definition 2.3. Motion of a material point. Let [0, T ] ⊂ R+ be the time interval
of interest. Then the motion of a material point P at current time t is described by its
spatial coordinates x in the current configuration. The motion is as follows

x = XR(X, t) = φt(φ
−1
R (P)(X)). (2.1)

Definition 2.4. Reference configuration at initial time. Since the choice of the
reference configuration is arbitrary, the configuration at a fixed time t0 is chosen to be
the reference configuration with Ω0 = φ0[B] according to Fig. 2.2. Thus the material
and spatial coordinates can be expressed by

X = φ0(P) ⇔ P = φ−1
0 (X) (2.2)

and

x = X0(X, t). (2.3)

Definition 2.5. Displacement vector. The displacements of particles are described
by a vector field

u : Ω0 × [0, T ] → R
ndim . (2.4)

with a reference position X ∈ Ω0 at time t0. Then, the displacement vector is defined
to be u(X, t) the difference between the current and the reference position vector

u(X, t) = x − X = X0(X, t) − X. (2.5)
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e1

e3

e2

B

Ω0

∂Ω0

Ωt

P

PR
P

φ0(P) φt(P)

X x = X0(X, t)

u(X, t)

Figure 2.2: Motion of a material body in a Euclidian space, represented in relative to
the configuration at time t0 as a chosen frame of reference.

2.3.2 Mixtures theory and kinematics of a mixture

2.3.2.1 Mixture theory

Mixtures of a given amount of immiscible substances can be described by the mixture
theory (see [104, 103, 75, 13]). Within this macroscopic description it is assumed
that the constituent of the mixture are not located in microscopic subareas but exist
simultaneously within the considered domain. Thus, a homogenization or an averaging
process is needed to transform the microscopic structure to a macroscopic representation,
see Fig. 2.3 or refer to [42, 43, 81].

Definition 2.6. A mixture or multi-phase continuum ϕ is a compound of several par-
tial continua, named constituents ϕα. The terms constituent and phase are used syn-
onymously.

solid

liquid

gas

Figure 2.3: Real geometric structure of the representative element volume (REV) (left)
and its smeared representation of a porous medium (right).
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The resulting quantities of a macroscopic representation may be used to describe the
physical process within the scale of the representative elementary volume (REV) suitable
for the system. The REV is the smallest area the macroscopic theory is capable for.
Within larger scales heterogeneities have to be quantified by the discretization of their
material boundaries or upscaling strategies have to be applied (see e.g. [17]).

2.3.2.2 Kinematics of a mixture

Definition 2.7. Partial bodies. In the mixture theory the mixture is treated as a
superposition of partial bodies Bα.

The reference and current configuration of partial bodies Bα can be defined according to
Def. 2.1.

Material and spatial coordinates are defined for the partial bodies (see Def. 2.2) and
finally the displacement vector of a phase is defined in Def. 2.8 as follows.

Definition 2.8. Displacement vector of a phase. The displacements of particles
of phase ϕα are described by a vector field

uα : Ω0 × [0, T ] → R
ndim . (2.6)

with a reference position Xα ∈ Ω0 at initial time t0. Then the displacement vector
u(Xα, t) is the difference between the current and the reference position vector

uα(Xα, t) = xα − Xα (2.7)

= X α
R (Xα, t) − Xα (2.8)

= X α
0 (Xα, t) − Xα. (2.9)

In the mixture theory approach it is presupposed that all phases are present and identi-
fiable any time. Thus, a total phase change due to temperature or chemical reactions is
not possible.

2.3.3 Concept of volume fractions

The mixture theory is not able to describe the internal structure of a mixture. Therefore,
the theory of porous media makes use of the volume fraction whenever a structural
quantity is needed in the formulation.

The resulting volumetric homogenization process for a granular material consisting of
two fluid phases (gaseous and liquid) is depicted in Fig. 2.4. It is assumed that the
representative element volume of the porous solid describes a control space. Only the
liquids or gases filling the pores can leave this control space. Within the control space
all phases and the pores, respectively, are assumed to be statistically distributed.
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Figure 2.4: The concept of volume fraction. Schematic representation of the real REV
(left) with a total volume of dv and the porous medium (right) described by its partial
volumes.

Definition 2.9. Volume fraction. The volume fraction is a scalar field nα : Ωt → R

which assigns each spatial point x ∈ Ωt of the current configuration to the local volume
fraction of the phase ϕα as a portion of the total volume as follows

nα =
dvα

dv
. (2.10)

Thus, the partial volume V α of the phase ϕα is defined by

V α =

∫

Ωt

nα(x) dv. (2.11)

It is supposed that the pores are completely filled by the constituent. Therefore, as the
total volume V is the sum of the partial volumes V α the sum of the volume fractions nα

is ∑

α

nα = 1. (2.12)

Definition 2.10. Saturation. The saturation of a fluid constituent is the local volume
fraction of the fluid phase ϕαf as a portion of the total fluid volume dvf . Thus it is defined
as follows

Sαf =
dvαf

dvf
αf = {l, g} (2.13)

where the total volume of the fluid phases dvf is equal to the pore space.

Definition 2.11. Porosity. The porosity n is the proportion of the non-solid volume
to the total volume. As the non-solid volume equals the fluid volume the porosity is
defined by the sum of the volume fractions of the fluid phases ϕαf

n =
dvf

dv
αf = {l, g} (2.14)

=
∑

αf

nαf (2.15)

= nl + ng. (2.16)
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Equivalently, the porosity can be defined by the solid fraction ns as follows

n = 1 − ns. (2.17)

Definition 2.12. Partial density. The partial density ρα
partial of a phase is the local

mass of the phase ϕα as a portion of the total volume dv, thus it is defined by

ρα
partial =

dmα

dv
. (2.18)

The partial density of the solid phase ρs
partial is the bulk density which is the mass of the

dry particles divided by the total volume. For the formulation of equations of state it is
more appropriate to use the real density and the saturation of a phase defined below.

Definition 2.13. Material density. The material density (real density) or simply
the density ρα of a phase is the local mass of the phase ϕα as a portion of the partial
volume dvα, thus it is defined by

ρα =
dmα

dvα
. (2.19)

The material density of the solid ρs is equal to the particle density which is the mass
of the solid particles divided by its volume. In this work usually the material density
is used instead of the partial density. The partial density and the material density are
related as follows

ρα
partial = nαρα. (2.20)

Definition 2.14. Mixture density. The mixture density ρ is the sum of the partial
densities defined by

ρ =
∑

α

ρα
partial, αf = {l, g}. (2.21)

Usually the effective densities and the fluid saturation are used to evaluate the mixture
density. According to Eq. (2.13) and (2.14) the fluid volume fraction is nαf = n Sαf .

Using the definition of porosity (2.17) and Eq. (2.20) for deriving the partial density of
the solid the density of the mixture results in

ρ = (1 − n) ρs + n
∑

αf

Sαfραf . (2.22)
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2.4 Kinematical quantities

2.4.1 Velocity and acceleration measures

Definition 2.15. Velocity of a phase. The velocity vα of a phase is defined as
follows

vα(X, t) =
dX α

R (Xα, t)

dt
. (2.23)

Definition 2.16. Acceleration of a phase. The acceleration aα of a phase is defined
as follows

aα(X, t) =
d2X α

R (Xα, t)

dt2
(2.24)

= v̇α(X, t) (2.25)

=
∂vα(X, t)

∂t
+ [ grad vα(X, t)] · vα(X, t) (2.26)

Definition 2.17. Relative velocity of a fluid phase. The relative velocity vαfs of
a fluid phase ϕαf is defined with respect to the motion of the solid phase ϕs

vαfs = vαf − vs. (2.27)

Definition 2.18. Relative acceleration of a fluid phase. The relative acceleration
aαfs of a fluid phase ϕαf is defined with respect to the motion of the solid phase ϕs

aαfs = aαf − as. (2.28)

The acceleration of a fluid phase aαf can be formulated in terms moving with the solid
phase ϕs. Then the time derivative moving with the solid phase ds/dt has to be taken.
It follows

aαf =
ds

dt
(vs + vαfs) (2.29)

= as + aαfs + [ grad vαf ] · vαfs.

2.4.2 Strain measures

Definition 2.19. The material gradient of motion

F (X, t) = GradXR(X, t) (2.30)

is referred to as the deformation gradient.
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Definition 2.20. The material gradient of the displacement vector is defined by

H(X, t) = Grad us(X, t). (2.31)

2.4.3 Geometric linearization

Definition 2.21. The motion of a body is described by small deformations if

δ = ‖H‖ ≪ 1 (2.32)

throughout the motion as well as

|us(X, t)| ≪ L, (2.33)

where L is a characteristic length of the body under observation.

If the assumption of small deformations is valid, then all kinematic quantities expressed
in terms of the displacement gradient H can be linearized with regard to H . This
process is called geometric linearization. For more details refer to Haupt (2000) [44].

In case of small deformations the current configuration is close to the reference con-
figuration. Thus, the difference between the material and the spatial representation is
negligible, us(X, t) = us(x, t), and

H = Grad us(X, t) = grad us(x, t) + O(δ2). (2.34)

2.4.4 Geometrically linearized measures

Definition 2.22. The tensor

ε =
1

2
(H + HT) (2.35)

is called linearized strain tensor.

According to Eq. (2.34), the linearized strain tensor is

ε =
1

2
( grad us(x, t) + grad us(x, t)T) + O(δ2). (2.36)

2.5 Balance equations of general mixtures

The formulation of balance equations is based on the 3 metaphysical principles proposed
by Truesdell (1984) [103]:

1. All properties of the mixture must be mathematical consequences of properties of
the constituents.
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2. So as to describe the motion of a constituent, we may in imagination isolate it
from the rest of the mixture, provided we allow properly for the actions of the other
constituents upon it.

3. The motion of the mixture is governed by the same equations as is a single body.

According to the above principles the global balance equation of conserved quantity Ψ
in a mixture ϕ can be derived by

d

dt

∫

B

Ψ dv =

∫

∂B

φ · n da +

∫

B

σ dv +

∫

B

Ψ̂ dv (2.37)

where n is the outward normal, φ · n is the outward flux vector associated with Ψ, σ is
the external supply of Ψ and Ψ̂ is the net production of Ψ.

Applying the Gauss theorem on the surface integral results in the local form of the
balance equation of the mixture

Ψ̇ + Ψ ∇ · ẋ = ∇ · φ + σ + Ψ̂. (2.38)

According to Truesdells principles the local conservation of a constituent ϕα is described
analogously to Eq. (2.38) by

Ψ̇α + Ψα ∇ · ẋα = ∇ · φα + σα + Ψ̂α. (2.39)

An important aspect is that the conservation of a quantity in the mixture and its con-
servation within a single phase are not independent. In fact, the sum of each single term
of the phase balance equation over all constituent has to result in the respective term in
the conservation equation of the mixture. Remark: The before mentioned summation is
valid only if the relative velocity of the phase ϕα with respect to the mixture ϕ is equal
zero.

2.6 Balance equations of deformable porous media

2.6.1 Introduction

In the present section the balance equations of the thermo-hydro-mechanical formulations
of saturated and partially saturated porous media are summarized. We are starting with
a general approach consisting of the three phases, the solid, the liquid and the gaseous
phase, referred to as ϕs, ϕl and ϕg, respectively. For more details see Lewis and Schrefler
(1998) [64]. As mentioned in the previous section the conservation of a quantity can be
formulated with respect to a single constituent or with respect to the mixture.
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2.6.2 Mechanical equilibrium

2.6.2.1 Balance of mass

The macroscopic mass balance equation for the solid phase divided by the solid density
ρs is as follows

(1 − n)

ρs

∂ρs

∂t
− ∂n

∂t
+ (1 − n)∇ · ∂u

∂t
= 0. (2.40)

2.6.2.2 Balance of linear momentum

The conservation of linear momentum of the solid phase leads to the following equation

∇ · (σ − α p1) + ρ g = 0, (2.41)

where σ and p are the effective stress of the solid skeleton and the excess pore pressure,
respectively. The density of the mixture is denoted by ρ, g is the gravity vector and α
is the Biot coefficient defined by Eq. (2.47). In the following the two terms ρ and p are
defined separately for saturated and unsaturated media.

I. Saturated medium. In case of a fully saturated medium the density of the fluid-
solid mixture ρb is

ρ = (1 − n) ρs + n ρl (2.42)

and the excess pore pressure p is the fluid pressure pf .

II. Unsaturated medium. In case of a partially saturated medium the density of the
liquid-gas-solid mixture ρ is

ρ = (1 − n) ρs + nSlρl + nSgρg (2.43)

and the excess pore pressure p is defined to be the sum of the partial pressure of the
liquid and the gaseous phase

p = Slpl + Sgpg. (2.44)

2.6.3 Hydraulic equilibrium

2.6.3.1 Balance of mass

I. Saturated flow. The hydraulic balance equation is based on the conservation of
fluid mass. A volumetric formulation is derived by the division of the mass balance
equation by the fluid density. The consideration of thermal expansion effects results in
the following equation

∇ · (n vl s)
︸ ︷︷ ︸

q

+S
∂pl

∂t
− nβl

T

∂T

∂t
− βs

T (α − n)
∂T

∂t
+ α ∇ · ∂u

∂t
= 0 (2.45)
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where S is the storativity term for a fluid saturated porous medium defined below. The
volumetric thermal expansion of the fluid and the solid are defined by the coefficients βl

T

and βs
T .

Due to the fluid-solid coupling the storativity S depends not only on the compressibility
of the fluid (K f - bulk modulus of the fluid) but also on the relation between the com-
pressive behavior of the solid skeleton (Ks - bulk modulus of the solid skeleton) and the
solid grains (KT - bulk modulus of the solid grains). The storativity is as follows ([64])

S =
1

K f
+

α − n

Ks

, (2.46)

where α is the Biot coefficient defined by

α = 1 − KT

Ks

. (2.47)

By applying the Biot coefficient, the influence of compressible solid grains is incorporated
into the formulation in which the bulk modulus of the solid skeleton only represents the
averaged value compressibility. The assumption of incompressible grains results in a Biot
coefficient of α = 1.

The thermal expansion of the fluid is regarded in the second term of Eq. (2.45). Thermal
strains on the small scale of the solid grains are not regarded in the overall parameter of
thermal expansion of the solid skeleton. The thermal expansion of the solid grains has
to be considered separately applying the third term of Eq. (2.45).

The most significant coupling term arises from the fluid-solid interaction, namely the
volumetric strain rate of the solid. The effect of internal compressibility is again incor-
porated by the consideration of the Biot coefficient α.

II-a. Multiphase flow. For the sake of completeness, the formulation of multiphase
flow in deformable porous media is outlined. In multiphase flow application the sources
and sinks appearing in the interior of the domain may be of special interest. They are
incorporated in terms of net production Qα for each phase ϕα. The derivation of the
general mass balance equation for the fluid phase in a rigid skeleton is given by Bear and
Bachmat (1990) [4] as follows

∂

∂t
(nSαρα) + ∇ · (nSαραvα) − Qρα = 0, α = l, g. (2.48)

Considering a deformable porous medium the following volumetric form of the fluid mass
balance equation is obtained

Sα ∂n

∂t
+

nSα

ρα

∂ρα

∂t
+ n

∂Sα

∂t
+

1

ρα
∇ · (nSαραvα s)

︸ ︷︷ ︸

Jαs

+ nSα ∇ · ∂u

∂t
− 1

ρα
Qρα = 0, α = l, g. (2.49)
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Using Eq. 2.40 eliminates the porosity derivative ∂n/∂t and the following balance equa-
tion is derived

Sα (1 − n)

ρs

∂ρs

∂t
+

nSα

ρα

∂ρα

∂t
+ n

∂Sα

∂t

+
1

ρα
∇ · Jα s + Sα ∇ · ∂u

∂t
− 1

ρα
Qρα = 0, α = l, g. (2.50)

In the next steps the treatment of the density derivatives is considered. The material
derivative of the of the solid density ∂ρs/∂t in Eq. (2.50) is replaced by the following
term ([64])

1

ρs

∂ρs

∂t
=

1

1 − n

[
α − n

Ks

∂

∂t
(Sgpg + Slpl) − βs

T (α − n)
∂T

∂t
− (1 − α)∇ · ∂u

∂t

]

(2.51)

The derivatives of the liquid and the gaseous density are derived from the equations of
state which are linear or non-linear functions of the fluid pressure pα and the temperature
T , respectively.

Further constraints are necessary to reduce the number of unknown quantities in
Eq. (2.50).

1. The time derivatives of the saturation can be reformulated by applying

∂Sg

∂t
= −∂Sl

∂t
(2.52)

which is directly derived from the requirement that the sum of the saturations
equal unity Sg + Sl = 1.

2. The capillary pressure pc is defined as the pressure difference of the gas phase and
the liquid phase

pc = pg − pl. (2.53)

The capillary pressure pc is a non-linear function of the liquid saturation Sl.

Using the above mentioned constitutive equations and constraints Eq. (2.50) can be
reformulated into two separate equations each consisting of a single primary variable.
The pressure-saturation formulation for multiphase flow is robust and widely used [101].
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II-b. Multiphase flow – one-phase formulation. The formulation of the mass
balance equation presented here is based on the assumption of an unsaturated medium
in which the gaseous phase flows without resistance and thus, remains at atmospheric
pressure. This pressure is chosen to be the reference pressure with pg = 0. In the
unsaturated zones the liquid pressure pl is negative while a positive pressure indicates
saturated zones.

The mass balance equation of the liquid phase can be formulated using Eq. (2.50) but
neglecting the gas phase. Inserting the density derivative of the solid given in Eq. (2.51)
yields

Slα − n

Ks

∂(Slpl)

∂t
− Sl βs

T (α − n)
∂T

∂t
+

nSl

ρl

∂ρl

∂t
+ n

∂Sl

∂t

+
1

ρl
∇ · J l s + Sl α ∇ · ∂u

∂t
− 1

ρl
Qρl = 0. (2.54)

The time derivative of the density is replaced using the equation of state of the liquid
phase given by

1

ρl

∂ρl

∂t
=

1

K l

∂p

∂t
− βl

T

∂T

∂t
, (2.55)

thus it yields

(

Sl2α − n

Ks

+ nSl 1

K l

)
∂pl

∂t
+

(
α − n

Ks

plSl + n

)
∂Sl

∂t

−
(
Sl βs

T (α − n) + nSlβl
T

) ∂T

∂t

+
1

ρl
∇ · J l s + Sl α ∇ · ∂u

∂t
− 1

ρl
Qρl = 0. (2.56)

2.6.3.2 Balance of linear momentum

Balance equations of linear momentum are formulated for the gaseous and the liquid
phase as follows

nαρα aα −∇ · (nα pα 1) + nαραg − nα Rα vα s = 0. (2.57)

The transformation using Eq. (2.29) for the fluid acceleration and the application of the
vector identity for the divergence of the stress in the fluid phase yields

nαvα s = nα(R)−1 (−∇pα + ρα(g − as − aα s)) . (2.58)

The permeability k and the relative permeability factor kα
rel are introduced as follows
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nα(R)−1 =
k kα

rel

µα
(2.59)

where µα is the viscosity of the fluid phase. Neglecting the solid acceleration as and the
relative acceleration of the fluid aα s finally yields the modified Darcy’s law

nαvα s =
k kα

rel

µα
(−∇pα + ραg). (2.60)

The above mentioned derivation of the modified Darcy’s law from the momentum balance
equation is described in detail by Bear and Bachmat (1990) [4] and Lewis and Schrefler
(1998) [64].

Remark: Darcy’s law is an equation describing the motion of the fluid occupying the void
space. As mentioned above, its derivation implies several assumptions. Its application
for the unsaturated case requires the specification of an additional soil water retention
curve for example the popular van Genuchten function ([106]). This unsaturated soil
hydraulic conductivity is a non-linear empirical function of the saturation. In view of
these facts, the modified Darcy law as well as its linear form will be referred to as a
constitutive equation defining the flux term in the fluid mass balance equation.

2.6.4 Thermodynamical equilibrium

I. Saturated flow. The conservation of heat energy in a fully saturated porous medium
is described by the following balance equation

(
(1 − n) csρs + n clρl

) ∂T

∂t
+ ∇J t + clρl ql s · ∇T = 0. (2.61)

where J t is the conductive heat flux defined by Fourier’s law in Sec. 6.8.

II. Multiphase flow. In case of multiphase flow, the balance equation of heat energy
reads as follows

(
(1 − n)csρs + n (Sl clρl + Sg cgρg)

) ∂T

∂t
+ ∇ · J t + (cgJg s + clJ l s) · ∇T = 0. (2.62)
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Chapter 3

Governing equations

The mere formulation of a problem is
far more often essential than its solution,
which may be merely a matter of math-
ematical or experiment skill.

Albert Einstein (1879 - 1955).

3.1 Introduction

In this section the governing equations of the thermo-hydro-mechanically (THM) cou-
pled problem are summarized for both the saturated and the partially saturated porous
medium. The solid is considered to behave as a thermoelastic material and the liquid
phase is assumed to be incompressible.

3.2 Saturated flow in poro-thermo-elastic media

In Box 3.1 the balance equations for the thermo-hydro-mechanically coupled saturated
flow problem are summarized. The fluid is assumed to be compressible. The material
properties are derived from the equations of state given in Sec. 6.7.1. A constitutive
equation has to be formulated for the stress strain relation of the linear thermoelastic
material. It is described by the generalized Hooke’s law

σ = λ tr εel 1 + 2G εel (3.1)

where εel is the elastic strain. Total strain ε is additively composed by elastic and
thermal strain εt, thus the elastic strain is as follows

εel = ε − εt εt = αT (T − Tref) 1

23
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The equation for the fluid flux, derived from the conservation of linear momentum in
the fluid, is Darcy’s law

q =
k

µl

(−∇pl + ρlg). (3.2)

The conductive thermal flux J t is

J t = −D∇T,J t = −D∇T, D = ((1 − n)λs + nλl)1 (3.3)

where D is the second order tensor of heat conduction.

Box 3.1: Thermo-hydro-mechanically coupled fully saturated flow formulation.
Balance equations.

Conservation of linear momentum of the solid phase:

∇ ·
(

σ − α pl 1
)

+ ρb g = 0 (3.4)

where ρb = n ρl + (1 − n) ρs

Conservation of mass:

∇ · q + S
∂pl

∂t
+ α ∇ · ∂u

∂t
= 0 (3.5)

where S = n
Kf

+ α−n
Ks

, α = 1 − KT
Ks

Conservation of heat energy:

∇ · J t + cρ
∂T

∂t
+ clρlq∇T = 0 (3.6)

where cρ = n clρl + (1 − n) csρs

3.3 Partially saturated flow in poro-thermo-elastic

media

In this section the governing equations of the thermo-hydro-mechanically coupled prob-
lem in the framework of partially saturated porous media are presented in the one-phase
formulation, see for example Lewis and Schrefler (1998) [64].

We assume an incompressible liquid in a moving porous solid and negligible gas pressure
gradients (Richards’ approximation). That means that in the partially saturated zone
the gaseous phase flows without resistance. Consequently, the gaseous phase remains
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at atmospheric pressure, which is taken as reference pressure. It is straightforward to
distinguish between saturated and unsaturated zone: in the saturated zone we have
positive pore pressures, whereas the pressure is negative in the unsaturated zone. The
two zones are separated by the free surface which can be obtained by the isobar of
zero pore pressure. Effects due to vapor transport are neglected in the formulation. Its
balance equations are summarized in Box 3.2.

Box 3.2: Thermo-hydro-mechanically coupled partially saturated one-phase flow
formulation. Balance equations.

Conservation of linear momentum of the solid phase:

∇ ·
(

σ − α Slpl 1
)

+ ρb g = 0 (3.7)

where ρb = n Slρl + (1 − n) ρs

Conservation of mass:
(

Sl2 α − n

Ks
+ nSl 1

K l

)
∂pl

∂t
+

(
α − n

Ks
plSl + n

)
∂Sl

∂t

−
(

Sl βs
T (α − n) + nSlβl

T

) ∂T

∂t

+
1

ρl
∇ · J l s + Sl α ∇ · ∂u

∂t
= 0. (3.8)

where α = 1 − KT
Ks

Conservation of heat energy:

∇ · J t + cρ
∂T

∂t
+ clρlq∇T = 0 (3.9)

where cρ = n cl Slρl + (1 − n) csρs

The constitutive equation for the stresses is equivalent to stress strain relation (3.1)
defined within the saturated flow formulation. The equation for the fluid flux, derived
from the conservation of linear momentum in the liquid phase, is the modified form
Darcy’s law

q =
k kl

rel

µl

(−∇p + ρlg). (3.10)

The time derivative of the saturation ∂Sl/∂t appearing in the mass balance equation

(3.8) is usually replaced by ∂Sl

∂pl
∂pl

∂t
. Then, the required derivative ∂Sl/∂pl is obtained

from the capillary pressure-saturation relation. The heat conduction for the multi-phase
system needed in balance equation (3.9) is given by Eq. (6.64) in Sec. 6.8.
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Chapter 4

The finite element method

4.1 Introduction

In the present section, a general approach for the finite element formulation of a generic
time dependent coupled problem, defined in Sec. 4.2.1, is outlined and the required
iterative techniques and numerical methods are presented.

4.2 Finite element formulation

The general finite element solution process is presented in the next sections. It consists
of the following steps:

1. Formulation of the differential equation governing the problem under consideration
(see Sec. 4.2.1).

2. Derivation of the weak form of the differential equation (see Sec. 4.2.2).

3. Approximation of state variables and their derivatives (see Sec. 4.2.4).

4. Computing of derived values of the state variables (for example fluxes).

5. Performing the integration over each element (see Sec. 4.2.5).

6. Assembly of the element contributions from previous item (see Sec. 4.2.6).

7. Incorporation of the Dirichlet boundary conditions.

8. Solving of the resulting system of equations (see Sec. 4.5).

9. Update of the field of unknown values and evaluation of desired derived values.

27
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4.2.1 A general initial boundary value problem

The formulation of the finite element method presented in the following sections is derived
according to a general coupled initial boundary value problem (IBVP). The considered
problem is defined as follows

∂u

∂t
= F(u(x, t), t) in Ω × [0; T ],

u(x, t0) = u0 in Ω,
u(x) = ū(t) on Γ,

(4.1)

where F(u(x, t), t) is a linear or non-linear function of u(x, t) and t and u(x, t0) is the
initial value of u(x, t) at time t0.

4.2.2 Weak formulation

In order to obtain a variational formulation, each balance equation is multiplied by a test
function. Integration by parts and application of the Gauss theorem leads to the weak
form (see App. A.2). By applying this procedure, the natural or Neumann boundary
conditions are incorporated.

4.2.3 Spatial discretization

The spatial domain Ω is approximated by Ω̂ composed of nel non overlapping finite
elements Ωe as follows

Ω ≈ Ω̂ =

nel⋃

e=1

Ωe. (4.2)

The geometry of these elements is approximated by shape functions. Usually identical
shape functions are used to approximate the displacements. This kind of element formu-
lation is called isoparametric. The decomposition of the domain into finite elements and
the use of shape functions for integration of the weak formulation at the element level
lead to a set of linear or non-linear equations. The number of equations is equivalent to
the number of degrees of freedom at the element nodes.

4.2.4 Numerical approximation

The finite element formulation is usually derived by applying the well known Bubnov-
Galerkin method in which the weighting or test functions are approximated by the same
shape function that are used for the approximation of the process dependent state vari-
ables like displacements, pressure or temperature.

In case of advective transport processes, a different choice of weighting function is useful
for stabilization. Here, special shape functions are used which are modified according
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to the current velocity field. This method is called Streamline Upwind/Petrov-Galerkin
(SUPG).

As also known from mechanical mixed finite element formulations, the ansatz-space of
coupled formulations for fluid-saturated poro-mechanics has to be chosen carefully (see
[113, 114, 108], amongst others). In mixed formulations the finite element spaces must
satisfy compatibility conditions in order to fulfill the stability criteria dictated by the
Babuška–Brezzi theory, obtained independently by Babuška and Brezzi [18]. For proofing
the stability of mixed formulations the inf-sup condition, has to be fulfilled (see [16]).
Hence, linear and quadratic shape functions are used for pressure und displacements,
respectively.

4.2.5 Numerical integration

The element contributions are the weighted integrals of the stiffness, conductivity or
storage terms, the internal fluxes or internal loads, and the external loads or sources.
Internal fluxes are stresses, heat flux, volume flux or mass flux. Internal loads can
arise from gravitational acceleration. External loads can be distributed along edges, on
surfaces or within the domain of an element.

The numerical integration is presented in App. A.2. With the performed integration
the weak form of the problem results in a nodal representation of the equation system.
Summing up of the contributions of each node results in a set of equation equivalents to
the number of nodes.

4.2.6 Assembly

The nodal contributions of each element are added to the algebraic system of equations.
In a coupled formulation the dimensions of the element contributions are non-uniform
as the approximations of the weighting functions are of different order.

4.3 Temporal discretization

General transient dynamic problems can be described by equations of the following form

Aü + Bu̇ + Cu = F (4.3)

where u is a set of state variables. Assuming a quasi static problem in soil mechanics
the dynamic behavior is of no importance. Thus, the term A can be omitted. The first
time derivative term B describes the transient behavior, defining e.g. the damping of
temporal fluctuations in the fluid pressure field. Both, the term B as well as C describing
the static response, e.g. the stress or the fluid flow, may depend non-linearly on the
system variable u or on further internal variables.
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4.3.1 A general initial value problem

An initial value problem (IVP) is defined by

∂u

∂t
= F(u(t), t) in [0; T ],

u(t0) = u0,
(4.4)

where F(u(t), t) is a linear or non-linear function of u(t0) and t and u(t0) is the initial
value of u(t0) at time t0. The time domain is discretized by equidistant time steps, thus
∆t = tn+1 − tn.

4.3.2 Numerical approximation of the time derivative

Single-step methods. The time operator in Eq. (4.4) can be expressed in finite dif-
ferences using a Taylor’s series expansion. Incorporation of the left and right endpoint
of a single time step results in

∂u

∂t
=

un+1 − un

∆t
+ O(∆t). (4.5)

If this approximation is used in the forward Euler scheme, which evaluates the state of
the system at current time tn as depicted in Fig. 4.1, the resulting solution un+1 can
directly be estimated in an explicit formula. The backward Euler method, calculating
the state of the system at the new time tn+1, is depicted in Fig. 4.2 and consequently
results in an implicit solution.

Second order accuracy can be achieved with the family of Newmark methods which
is well-established in structural dynamics, see e.g. Hughes (2000) [46]. Higher order of
accuracy is gained by Runge-Kutta methods. They are easy to implement and very stable.
The primary disadvantage of Runge-Kutta methods is that they require significantly more
computer time than multi-step methods of comparable accuracy.

Multi-step methods. In contrast to single-step methods, multi-step methods use
values from previous time steps. Thus, they are not self-starting, i.e. some single-steps
have to be performed before a multi-step integration is possible.

The leapfrog strategy is a centered scheme, depicted in Fig. 4.3. It is developed around
the current time tn, thus it yields

∂u

∂t
=

un+1 − un−1

2∆t
+ O(∆t2). (4.6)

The accuracy of this scheme is of second order. Other multi-step methods are for example
Predictor-Corrector methods and various Adams methods.
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u u̇n

un+1−un

∆t

ttn−1 tn tn+1

Figure 4.1: Single-step
method. Explicit Euler.
System state evaluation at
current time tn.

u

u̇n+1

un+1−un

∆t

ttn−1 tn tn+1

Figure 4.2: Single-step
method. Implicit Euler.
System state evaluation at
new time tn+1.

u u̇n

un+1−un−1

2∆t

ttn−1 tn tn+1

Figure 4.3: Multi-step
method with approxima-
tion around tn. Leapfrog:
centered explicit. System
state evaluation at current
time tn.

4.3.3 Numerical integration in time

The exact integration of (4.4) in time yields

∫ tn+1

tn

∂u

∂t
dt = un+1 − un =

∫ tn+1

tn

F(t, u(t)) dt. (4.7)

This differential equation can be replaced by finite differences according to Eq. (4.5)
while the function F can be evaluated at time tn and tn+1 and then weighted by the
time collocation factor θ as follows

un+1 − un

∆t
= θ F(tn+1, un+1) + (1 − θ) F(tn, un) + O, 0 ≤ θ ≤ 1. (4.8)

Depending on the time collocation, several time-stepping schemes of different order of
accuracy are possible:

1. θ = 0. The fully explicit forward Euler scheme, see Fig. 4.4.
is 1st order accurate

un+1 = un + ∆t F(tn, un) + O(∆t2). (4.9)

The forward Euler scheme is not neutral for various problems, in the sense that
some quantities such as mass, momentum or energy are not conserved but may
decay or grow as the simulation is advanced in time. When these quantities grow
with time, the model is of course unstable. The explicit leapfrog scheme is neutral
and conditionally stable.
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2. θ = 0.5. The semi-implicit Crank-Nicolson scheme (cf. [22]), see Fig. 4.5 is 2nd
order accurate

un+1 = un + ∆t
1

2
(F(tn+1, un+1) + F(tn, un)) + O(∆t3). (4.10)

The advantage of the semi-implicit treatment is that the time-operator is centered.
Thus, this scheme (centered in time) is neutral.

3. θ = 1.0. The fully-implicit backward Euler scheme, see Fig. 4.6,
is 1st order accurate

un+1 = un + ∆t F(tn+1, un+1) + O(∆t2). (4.11)

This fully-implicit scheme is not neutral but unconditionally stable.

tn tn+1
t

F

Figure 4.4: Forward Eu-
ler (left endpoint).

tn tn+1
t

F

Figure 4.5: Crank-
Nicolson (trapezoidal).

tn tn+1
t

F

Figure 4.6: Backward
Euler (right endpoint).

Usually fully implicit schemes are preferred in mechanical analysis in order to ensure
the stability of the algorithm. In transient transport analysis the accuracy is of great
importance, thus the semi-implicit Crank-Nicolson scheme is of special interest. For more
details on stability and accuracy the reader should refer to Knabner and Angermann
(2003) [53] amongst others.

4.4 Iterative techniques for nonlinear algebraic

equations

4.4.1 Introduction

Non-linear problems generally result non-linear algebraic equations of the following form

G(a) = f − P(a) = 0, (4.12)
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where a is the set of discretized solution parameters, f is a vector which is independent
of the parameters while P is a vector dependent on the parameters.

A discretization due to load or time steps yields

Gn+1 = G(an+1) = fn+1 − P(an+1) = 0. (4.13)

Assuming an iterative procedure with a solution increment

dai
n = ai+1

n+1 − ai
n+1 (4.14)

the Taylor series expansion of G(an+1) about the last iterative solution ai
n+1 is as follows

G(ai+1
n+1) = G(ai

n+1) +

(
∂G

∂a

)i

n+1

dai
n +

(
∂2G

∂a2

)i

n+1

(dai
n)2 + ... = 0 (4.15)

With a given change in the forcing function

fn+1 = fn + ∆fn (4.16)

the new solution can be gained starting from the last solution an by iterative determi-
nation of the total increment ∆an (Newton-Raphson method)

an+1 = an + ∆ai
n (4.17)

or by direct evaluation of the solution vector an+1 (Picard iteration).

For solving non-linear equations governing flow in partially saturated porous media the
Picard iteration is widely used. A comparison of Picard and Newton scheme according
to this problem can be found in Paniconi and Putti (1994) [80]. In non-linear structural
analysis the Newton or modified Newton methods are usually applied ([115, 108]).

4.4.2 The Newton-Raphson method

Assuming that an initial solution is available and no divergence occurs in the following
iterative procedure, the Newton-Raphson method achieves a quadratic order of conver-
gence. The method was derived by Newton and Raphson independently. A brief review
of its origin can be found in Bicanic and Johnson (1979) [5].

Omitting the quadratic terms in the Taylor series (4.15) the non-linear problem (4.12)
is approximated linearly by

G(ai+1
n+1) ≈ G(ai

n+1) +

(
∂G

∂a

)i

n+1

dai
n = 0 (4.18)

where dai
n is the solution increment of iteration i. The Jacobian matrix ∂G/∂a (or the

tangential stiffness KT) corresponding to the tangent direction ∂P/∂a given by

KT =
∂P

∂a
= −∂G

∂a
(4.19)
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Figure 4.7: The Newton-Raphson method.

is used to derive the iterative correction defined in Eq. (4.18) as follows

dai
n = (KT

i)−1Gi
n+1. (4.20)

The final solution is achieved by a series of successive approximations, illustrated in
Fig. 4.7,

ai+1
n+1 = ai

n+1 + dai
n (4.21)

= an + ∆ai
n (4.22)

where

∆ai
n =

i∑

k=1

dak
n. (4.23)

4.4.3 Direct (Picard) iteration

Assume the non-linear problem of the following form

G(a) = f − K(a) a = 0 (4.24)

which can be approximated by

G(ai+1
n+1) ≈

G(ai
n+1)

︷ ︸︸ ︷

fn+1 − K(ai
n+1)a

i
n+1 −

KT
︷ ︸︸ ︷

(K(ai
n+1) +

∂K(ai
n+1)

∂ai
n+1

ai
n+1) dai

n. (4.25)

By neglecting the second term of KT and replacing dai
n by ai+1

n+1 − ai
n+1 we get a linear

form
G(ai+1

n+1) ≈ fn+1 − K(ai
n+1)a

i+1
n+1 = 0 (4.26)
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Figure 4.8: Direct (Picard) iteration.

which finally results in the following iterative update procedure

ai+1
n+1 = [K(ai

n+1)]
−1fn+1. (4.27)

4.5 Solution procedures for coupled equations

4.5.1 Introduction

The governing equation of the thermo-hydro-mechanically coupled formulation of single-
phase flow in porous media is outlined in Sec. 3.2. A coupled system of algebraic equa-
tions arises from spatial discretization of the weak formulation of this transient coupled
problem. It can be written in a concise form that reads as follows

B
∂Y

∂t
+ CY = F (4.28)

where the matrices B and C represent the transient and the steady state response of
the problem. The matrices are usually unsymmetric and may depend on the configura-
tion vector Y . The right hand side F implies the load vectors and additional coupling
terms that can not be incorporated on the left hand side matrices, for example the term
representing thermal expansion.

The thermo-hydro-mechanically coupled formulation, containing the thermal process PT

describing the heat flow, the hydraulic process Pp representing the fluid flow, and the
mechanical process Pu for the estimation of solid deformations reads
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(4.29)

where the processes are described by stiffness or conductivity matrices K, capacitance
or storage matrices S and coupling matrices C. The configuration vector is composed
by the state variables {u, p, T}T.

4.5.2 Temporal discretization

The discretization in time is carried out using an implicit scheme, thus at time tn+θ

Eq. (4.28) results in

[
1

∆t
B + θ C

]

Y n+1 =

[
1

∆t
B + (1 − θ)C

]

Y n + Ft+θ (4.30)

where ∆t is the time step length, Y n and Y n+1 are the state vectors at times tn and
tn+1. Parameter θ with limits 0 ≤ θ ≤ 1 is the time collocation introduced in Sec. 4.3.

4.5.3 Incremental formulation

The temporal discretization given in Eq. (4.30) is formulated in an incremental form

[
1

∆t
B + θ C

]

∆Y i
n = −

[
1

∆t
B + θ C

]

Y i
n +

[
1

∆t
B + (1 − θ)C

]

Y n + Ft+θ (4.31)

In an iterative scheme the update of the configuration vector is

Y i+1
n+1 = Y i

n+1 + ∆Y i
n. (4.32)

4.5.4 Solving of coupled linear equations

4.5.4.1 Monolithic and partitioned approach

The incremental solutions of Eq. (4.31) can be gained within a monolithic scheme re-
sulting in one system of coupled equations. A partitioned approach which solves the
equations separately may have certain advantages concerning

• the reduction of the size of the system matrices,

• and the smaller condition numbers of the separated system matrices.
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In soil consolidation problems distinct couplings between the equilibrium and mass bal-
ance equations occur. A procedure for judging the strength of the coupling is given in
Lewis et al. (1991) [65].

A monolithic approach has been chosen for solving the coupled solid-fluid problem while
the thermal problem is solved separately. Both systems of equations are solved in an
iterative scheme until satisfying convergence is achieved.

The incremental update of the configuration vector Y , pointed out in the previous
section, has been chosen only for the solid problem. The resulting system of equations
for the solid-fluid problem is

(
1

∆t

[
0 0
Cpu Spp

]

+ θ

[
Kuu Cup

0 Kpp

]){
∆ui

n

pi
n+1

}

= −
(

1

∆t

[
0 0
Cpu 0

]

+ θ

[
Kuu Cup

0 0

]){
ui

n+1

0

}

+

(
1

∆t

[
0 0
Cpu Spp

]

+ (1 − θ)

[
Kuu Cup

0 Kpp

]) {
u

p

}

n

+

[
CuT
1

∆t
CpT

]
({

T i
n+1

}
−

{
Tn

})
+

{
Fu

Fp

}

t+θ

(4.33)

and the thermal problem is
(

1

∆t

[
STT

]
+ θ

[
KTT

]
)

{
T

}i+1

n+1

=

(
1

∆t

[
STT

]
+ (1 − θ)

[
KTT

]
)

{
T

}

n
+

{
FT

}

t+θ
. (4.34)

The update of the configuration vector is
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The derivation of the finite element formulation for the solid-fluid problem and the
resulting finite element matrices are given in App. A.2.

4.5.5 Solving of coupled non-linear equations

4.5.5.1 Formulation of the residual

This section is devoted to the treatment of non-linearities occurring in the coupled set of
balance equations of the hydraulic-mechanical problem. The non-linear equation system
resulting from the finite element formulation can be written in the following compact
form

G(Y ) = 0, (4.36)
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where the configuration vector is

Y =

{
u

p

}

. (4.37)

For the numerical solution of the non-linear problem it has to be linearized at Ȳ with
respect to ∆Y

G(Ȳ , ∆Y ) ∼= G(Ȳ ) + DȲ G(Ȳ ) · ∆Y . (4.38)

where DȲ G · ∆Y is the Gâteaux derivative.

It follows, that for given initial data of the last time step tn Y n = {un, pn} and in respect
of the corresponding internal quantities describing the non-linear behavior the resulting
equilibrium problem is to find

Y n+1 such that Gn+1[Y n+1] = 0. (4.39)

4.5.6 Linearization of the residual

In view of a Newton algorithm for solving the finite element discretized counterpart of
the equilibrium problem (4.39) a linearization of the residual Gn+1 with respect to the
configuration vector Y n+1 becomes necessary. The application of the Gâteaux derivative
∆Y (•)n+1

∆Y (•)n+1 =
d(•)

dY n+1 · ∆Y =
d

dǫ

{
(•)[Y n+1 + ǫ∆Y ]

}

ǫ=0
(4.40)

leads to the following result

∆Y Gn+1 =

[
∆Y F n+1

s + ∆t∆Y Gint,n+1
s

∆Y F n+1
f − ∆t∆Y Gint,n+1

f

]

(4.41)

where

1. ∆Y F n+1
s = ∆uF n+1

s + ∆pF
n+1
s

a. ∆uF n+1
s =

∫

Ω

ρb

θ∆t
δu · ∆udV

b. ∆pF
n+1
s = 0

2. ∆Y Gint,n+1
s = ∆uGint,n+1

s + ∆pG
int,n+1
s

a. ∆uGint,n+1
s =

∫

Ω

∇xδu : C
n+θ
11 : ∇x∆udV

b. ∆pG
int,n+1
s =

∫

Ω

− div δuθ∆pdV
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describe in the solid sub-problem and

1. ∆Y F n+1
f = ∆uF n+1

f + ∆pF
n+1
f

a. ∆uF n+1
f = 0

b. ∆pF
n+1
f =

∫

Ω

Sδp∆pdV

2. ∆Y Gint,n+1
f = ∆uGint,n+1

f + ∆pG
int,n+1
f

a. ∆uGint,n+1
f = − 1

θ∆t

∫

Ω

δp div ∆un+θdV +

∫

Ω

∇xδpC
n+θ
21 : ∇x∆udV

b. ∆pG
int,n+1
f =

∫

Ω

θ∇xδp · Cn+θ
22 · ∇x∆pdV

are according to the the fluid sub-problem. It remains to determine the following con-
sistent moduli

C
n+θ
11 =

∂σn+θ

∂εn+1
, C

n+θ
21 =

∂qn+θ

∂εn+1
, C

n+θ
22 =

∂qn+θ

∂(∇xp)n+1
. (4.42)

The consistent tangent moduli ∂σn+θ/∂εn+1 of the solid problem are derived in Chap-
ter 6. The term ∂qn+θ/∂εn+1 arises from the coupling between solid and fluid and
∂qn+θ/∂(∇xp)n+1 = k/µf is addressed in Chapter 3. Corresponding derivations for the
analysis of rock salt can be found in Mahnken and Kohlmeier (1999) [69].



40 4.5 Solution procedures for coupled equations



Chapter 5

Coupling phenomena and associated
numerical aspects

The diversity of the phenomena of na-
ture is so great, and the treasures hid-
den in the heavens so rich, precisely in
order that the human mind shall never
be lacking in fresh nourishment.

Johannes Kepler (1571 - 1630).
German astronomer.

5.1 Coupling phenomena

5.1.1 Introduction

The assessment of geotechnical constructions or engineered barrier systems requires ex-
tensive numerical simulations of meaningful scenarios. The numerical simulation of
geotechnical problems, which usually are multi-field problems, requires the solving of
a compound of sub-problems.

In geomechanics the all-important sub-problems are the solid mechanics and the fluid
mechanics. The interaction of both is founded in the fluid pressure and the volumetric
deformation rate of the solid. Whereas the solid mechanical problem itself could usually
be formulated quasi-static, the coupling to the transient fluid flow results in a time
dependent problem. Due to its impact, the consideration of fluid-solid couplings in
geotechnical simulations results in much more reliable predictions.

The third sub-problem is thermodynamics. Numerous additional coupling phenomena
arise if thermal effects have to be taken into account. Thermal effects are the thermal

41
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expansion of the solid or the fluid phase, respectively. The fluid and the fluid flow
are associated with conductive and convective heat transport, respectively. A back
coupling may occur if the thermal expansion of the solid causes additional fluid flow
that transports the heat. Heat conduction is of interest in geothermal applications. In
case of high temperature conditions vaporization has to be taken into account.

The forth sub-problem mentioned in this work is the transport of matter. The transport
process only becomes relevant if persistent flow processes occur. These flow processes can
be caused by volumetric deformation. Solid deformations might also generate additional
or close existing flow paths and thus influence the matter transport.

5.1.2 Coupling terms in the balance equations

Fluid-solid interaction The hydraulic-mechanical interaction in a poro-elastic or
poro-plastic formulation is governed by the Biot coefficient α that scales the fluid pres-
sure term and the volumetric strain rate. The fluid-solid coupling in a linear elastic
porous medium is presented in Sec. 9.1.1. Physical or geometrical non-linearities may
occur in the coupling terms. Formulations of finite poroelasticity are given by Eipper
(1998) [36]. A highly non-linear coupling occurs if partially saturated media are con-
sidered. In this case, the coupling term is additionally affected by the saturation Sα of
the fluid phases (see for example [35] or [56]). A numerical application of fluid flow in a
partially saturated poro-elastic medium is given in Sec. 9.3.2.1.

Thermal expansion. A transient temperature field results in transient thermal expan-
sion or contraction. The governing parameter is the linear thermal expansion coefficient
αT . Thermal stresses occur if the displacements are restraint or in case of thermal gra-
dients. The mechanical response due to thermal load in a thermo-hydro-mechanically
coupled framework is addressed in Sec. 9.3.1 (see [55]).

Transport. The couplings arising in transport phenomena are caused by the fluid
flux terms in the respective balance equation of the transported media. Consequently,
coupling is restricted to the advective part of the transport process. Diffusive transport
can be treated as a single process without interactions. The advective transport of matter
can be induced by solid deformations via the fluid-solid coupling. The corresponding
numerical example is given in Sec. 9.1.2.

5.1.3 Coupling terms in the constitutive equations

The coupling of different processes is reflected in the constitutive behavior of fluids or
solids. An overview of couplings arising in the framework of geotechnical applications is
given below.
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Permeability and porosity. The fluid flux is governed by the permeability k. The
permeability is scaled by a factor called relative permeability that depends on the satu-
ration. The capillary-pressure saturation relations and relative permeability saturation
relations are described in Sec. 6.7.2. These relations can be highly non-linear.

The deformation of a porous medium usually results in a change of void space if vol-
umetric strains are present. The associated changes in compressibility, porosity and
permeability are important issues (see e.g. [36] or [111]).

Swelling and shrinkage. Saturation induced swelling or shrinkage of expansive soils
is caused by the transient evolution of saturation caused by humidity changes or vapor
transport. The swelling may cause a change of porosity and permeability especially if
a free swelling is restrained (see e.g. [93] [70], [110] or [54]). The swelling behavior of
bentonite material is of interest in the simulation performed in Sec. 9.3.1. In case of
a decrease of saturation, a restrained shrinkage causes fracturing that opens additional
flow paths.

Plastic behavior. The yielding of plastic materials, especially granular soils, strongly
depends on the mean effective normal stress that is influenced by the fluid pressure. Thus,
the fluid pressure is an significant coupling factor in elasto-plastic analysis of soils. The
deviatoric plastic strain rate can be accompanied by a volumetric part, which directly
interacts with the fluid flow. The corresponding analyses are presented in Sec. 8.4.3 and
Sec. 9.3.3.

Density dependence. Gradients in temperature or concentration fields result in sig-
nificant spatial density variations of the transporting fluid. The analysis of variable
density flows in groundwater systems, considering the thermohaline Elder problem [37],
can be found in Kolditz et al. (1988) [58], Diersch and Kolditz (1988) [29], Johannsen
(2002) [48], amongst others. An example of a thermo-hydro-mechanically coupled den-
sity flow is presented in Sec. 9.2.2 (see [55]).

5.2 Numerical aspects

5.2.1 Formulation and assembly of the algebraic equation

In this section, the computational formulation of coupled problems is outlined. The cho-
sen problem consists of three processes: a hydraulic-mechanically coupled sub-problem,
with its finite element formulation presented in App. B.1, and a thermal sub-problem.
For the numerical implementation of these finite element algorithms, a process oriented
approach has been chosen. Each process provides its own function for the set-up of nec-
essary finite element matrices. Moreover, the finite element function is responsible for
all the coupling matrices that provide the interaction directed from all other processes
to itself.
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Figure 5.1: Schematic description of the set-up of a linear equation system with direct
(monolithic) or indirect (partitioned) treatment of the couplings.

A schematic visualization of this approach is given in Fig. 5.1, assuming a fully coupled
hydraulic-mechanical sub-problem which is iteratively coupled with the thermal sub-
problem. This approach results in a coupled formulation equivalent to the following
algebraic system of equations

[
Kuu Cup

Cpu Kpp

]{
∆û

p̂

}

=

{
Ru

Rp

}

(5.1)

and

[
KTT

] {

T̂
}

=
{

RT

}
. (5.2)

If the fluid-solid coupling is weak, the multi-field problem can also be arranged separately
in order to formulate an iterative scheme that solves all sub-problems successively. In this
case, the contributions of the coupling terms, provided by the finite element functions,
are assembled on the right hand side of the equation system.

The advantage of the approach presented here is its flexibility. Whole processes as well
as single process couplings can be cut off or deactivated in an easy and convincing way.
This approach also provides a basis for the formulation of constitutively coupled material
behavior often requiring a set of multiple processes.
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5.2.2 Sparse storage scheme

The coefficient matrix of an algebraic equation system resulting from a finite element
formulation is a sparse matrix, as the element matrices are overlapping only by the
contributions of neighboring elements. The structure of this sparse matrix, more precisely
the distribution of the non-zero entities, is symmetric. In order to avoid the wasting of
memory only non-zero values are considered in the applied sparse storage scheme. The
standard storage of a structurally symmetric sparse matrix with unsymmetric entity
values is depicted in Fig. 5.2. In Fig. 5.3 the strategy of column compressed sparse
storage technique is applied. As the matrix is supposed to have unsymmetric entity
values, the diagonal part and both the upper and lower triangle parts have to be stored.
Nevertheless, the symmetric structure of the matrix can still be taken into consideration
for reducing the memory demand of the sparse storage scheme.

: zero value

k

l

Figure 5.2: Standard storage of a
structurally symmetric sparse ma-
trix.

i

row index

non-zero value in row k

column / row
entry index

ki

l

li

li
ki=

Additional information:

Last column   withl

Figure 5.3: Column compressed storage of a
structurally symmetric sparse matrix. The coeffi-
cient are addressed using the indices (i, l) instead
of (k, l).

5.2.3 Iterative solving of linear systems

In this section some aspects of iterative solvers for linear equations are mentioned. In
particular, the solving of linear equations involving unsymmetric matrices is addressed
here. A broad overview is given in Kanzow (2005) [51] amongst others. The chosen
algorithm consists of an indirect solver with bandwidth reduction and preconditioning.
Some important aspects of this solving method are presented in the next sections.



46 5.2 Numerical aspects

5.2.3.1 Iterative solver

The discretized form of coupled equations usually results in algebraic systems of linear
equations consisting of an unsymmetric coefficient matrix. For the solution of such non-
symmetric linear equations the Biconjugate Gradient Stabilized method (BiCGSTAB) of
van der Vorst (1992) [105] is a commonly used method.

5.2.3.2 Preconditioning

The linear system is preconditioned by an incomplete lower-upper (ILU) decomposition
combined with a diagonal preconditioning. In order to achieve an optimal ILU decom-
position, the bandwidth of the matrix is optimized by a grid node reordering. Some
aspects of bandwidth reduction for coupled equation systems are addressed in the next
section.

5.2.3.3 Bandwidth reduction

In order to achieve an optimal performance of the sparse storage scheme and the above
mentioned ILU decomposition an optimal matrix bandwidth reduction is important. For
a good performance of larger problems treated in this work, a reordering of the grid nodes
has been necessary. The reverse Cuthill-McKee algorithm or the Gibbs-Poole-Stockmeyer
(GPS) [40] algorithm can be applied.

The resulting matrix of a hydraulic-mechanically coupled formulation consisting of six
straight-lined hexahedral elements is presented here. Suppose that the structure of the
linear equation system is according to the type of unknowns (displacement ux, uy, uz

and fluid pressure p) and no reordering scheme is applied, then the matrix has a poor
bandwidth depicted in Fig. 5.4. If a grid node reordering is applied the resulting matrix
consists of several diagonal bands according to the number of unknowns. This matrix
type is depicted in Fig. 5.5. A small bandwidth and an optimal reduction of the number
of iterations needed is achieved if the system of equations is arranged according to the
reordered nodal structure. It has to be taken into account, that the nodes have either
four (3 × ui, p) or three (ui) degrees of freedom.

The increase in performance of the solution procedure according to the bandwidth re-
duction results from fewer iterations and faster access to the sparse matrix coefficients.
The length of time required for the solving of coupled problems is reduced up to ten
times if an adequate bandwidth reduction can be achieved.
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Chapter 6

Constitutive modeling

Obstacles are those frightful things we
see when we take our eyes off our goals.

Henry Ford.

6.1 Linear elasticity

The simplest formulation of a constitutive equation, provided by the hyperelastic mate-
rial model, the stress strain response is derived from a stored energy function given in
Def. 6.1.

Definition 6.1. Stored energy and stress response. Let W be the stored energy
function

W : Ωt × S → R, (6.1)

such that the stress σ can be derived as follows

σ(x) =
∂W [x, ε(x)]

∂ε
. (6.2)

Definition 6.2. Elasticity tensor. The fourth order tensor C derived by

C(x) =
∂2W [x, ε(x)]

∂ε2
(6.3)

is called elasticity tensor describing the stress-strain relation and consisting of 21 inde-
pendent parameters.
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Definition 6.3. Isotropic elasticity. If W does not depend on x ∈ B the material
is homogeneous. If W is rotationally invariant the material behavior is isotropic. In case
of additionally constant C the material is linear elastic and

C = λ1 ⊗ 1 + 2 G II. (6.4)

where 1 is the second order and II is the fourth-order identity tensor defined by

IIijkl :=
1

2
[δikδjl + δilδjk].

The two components, λ and G are the Lamé constants. If the matrix notation defined
in Eq. (6.7) is used, the elastic tangent C can also be defined by

C =











C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C11−C12

2
0 0

0 0 0 0 C11−C12

2
0

0 0 0 0 0 C11−C12

2











(6.5)

where

C11 = λ + 2G =
E

1 + ν

1 − ν

1 − 2ν
,

C12 = λ =
E

1 + ν

ν

1 − 2ν
,

C11 − C12

2
= G.

6.2 Anisotropic elasticity

6.2.1 Introduction

In general, geomaterials can be assumed to be isotropic. However, geologic observations
show that rocks, soils, and fault zones typically have anisotropic and inhomogeneous
material properties. The most common type of anisotropy found in geomaterials is the
transverse isotropy, where there is an axis of elastic symmetry, generally vertical, and
isotropy is found only inside the planes perpendicular to that axis.

Thus, for example the mechanical behavior of layered inclined soil or rock formations
can be approximated by transversely isotropic elasticity. The required theory and its
application in a verification example will be presented in this section. An application
within a geotechnical framework using RockFlow’s unsaturated flow model is given by
Shao et al. (2006) [93]. They are analyzing the saturated-unsaturated behavior of
anisotropic formations of clay materials.
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6.2.2 Notation

For the implementation of material laws the second and fourth order tensors are expressed
in terms of vectors and matrices, respectively. The resulting notation is called contracted
notation or Voigt-Kelvin notation, see e.g. Reddy (2002) [82]. With the following change
of subscripts

11 → 1, 22 → 2, 33 → 3, 23 → 4, 13 → 5, 12 → 6.

the stress and strain tensors are expressed in a single-subscript notation











σ1

σ2

σ3

σ4

σ5

σ6











=











σ11

σ22

σ33

σ23

σ13

σ12











,











ε1

ε2

ε3

ε4

ε5

ε6











=











ε11

ε22

ε33

ε23

ε13

ε12











(6.6)

and the stiffness tensor is expressed analogously with two subscript components

{Cijkl|{i, j, k, l} = 1, 2, 3} → {Cαβ|{α, β} = 1, ..., 6}. (6.7)

6.2.3 Transverse isotropy

An orthotropic body has material properties that are different in three mutually perpen-
dicular directions at a point in the body and, further, have three mutually perpendicular
planes of material symmetry. Thus, the properties are a function of orientation at a point
in the body. A special class of orthotropic materials is a material which has the same
properties in one plane but different properties in the direction normal to this plane.
Such a material class is called transversely isotropic.

A transversely isotropic material is described by five independent elastic coefficients λ,
GT , GL, α and β. The direction a (||a|| = 1) perpendicular to the plane of isotropy
is called axis of transverse isotropy. The derivation and formulation of transversely
isotropic material is given in detail by Schröder (1996) [90]. In tensor notation, the
material is described by the following expression

C = λ1⊗1+2GT II+α[a⊗a⊗1+a⊗a⊗1]+2(GL−GT ) aIIa +βa⊗a⊗a⊗a. (6.8)

In case of an axis of isotropy a lying parallel to direction 3 Eq. (6.8) leads to the following
matrix representation

C =











λ + 2GT λ λ + α 0 0 0
λ λ + 2GT λ + α 0 0 0

λ + α λ + α λ + 2α + β + 4GL − 2GT 0 0 0
0 0 0 GL 0 0
0 0 0 0 GL 0
0 0 0 0 0 GT











. (6.9)
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Consequently, transverse isotropic material is defined by the following five independent
parameters

C =











C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 1

2
(C11 − C12)











. (6.10)

The description of transversely isotropic material in an invariant formulation is given in
Table C.1. The parameters in engineering representation depend on the axis of isotropy.
In App. C.3 the parameters needed in case of direction 1, 2 and 3 are summarized in
Tables C.2, C.3 and C.4, respectively.

6.2.4 Numerical example

A tensile test is carried out in plane strain conditions according to an example proposed
by Schröder (1996) [90]. The orientation of the material properties is rotated during the
simulation.

6.2.4.1 Set-up

The set-up is depicted in Fig. 6.1. The behavior of the material is transversely isotropic.
During the simulation the axis of transverse isotropy is rotated counter-clockwise with
time starting with γ = 0◦ and ending with γ = 180◦.

b

4

1 2

3

l
p0

g

a

x

y

Figure 6.1: Tensile test. Set-up.
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6.2.4.2 Representation of anisotropic material parameters

Invariant representation. The applied load, the geometry data and material prop-
erties in invariant representation are given in Table 6.1. Remark: In this invariant
representation the x-direction of the prescribed coordinate system is always chosen to
be the axis of transverse isotropy a.

Table 6.1: Load, material and geometric properties.

Parameter Value
Load p0 0.2 MPa
Material λ 1000 MPa

GL 375 MPa
GT 175 MPa
α 10 MPa
β 10 MPa

Local coordinate system γ(t) 0◦...180◦

Geometry b 10 mm
l 10 mm

Representation in terms of engineering elastic properties. Two further simu-
lations are carried out for the purpose of comparison using equivalent elastic properties.
Now, these properties are given in engineering representation. The resulting values re-
main unchanged.

The two sets of parameters for two different axis of transverse isotropy (first case x and
second case y) are given in Table 6.2 and 6.3, respectively. For the first set of parameters
(a = x-direction), the rotation of the local coordinate system starts with the initial
global coordinate system: the angle is γ = 0◦...180◦.

Table 6.2: Engineering representation of elastic properties with axis of transverse isotropy
in x-direction.

Parameter Value
Material E1 1311.82972 MPa

E2 = E3 561.121223 MPa
ν12 0.18383691
ν23 0.60320349
G12 375.0 MPa

Local coordinate system γ(t) 0◦...180◦

The application of the second set of parameters (a = y-direction) requires the rotation
of the coordinate system in a way that the local y-axis is mapped on the global x-axis:
the angle is γ = −90◦...90◦. In both cases, the same results are obtained (c.f. Fig. 6.2).
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Table 6.3: Engineering representation of elastic properties with axis of transverse isotropy
in y-direction.

Parameter Value
Material E2 1311.82972 MPa

E1 = E3 561.121223 MPa
ν21 0.18383691
ν13 0.60320349
G21 375.0 MPa

Local coordinate system γ(t) −90◦...90◦

6.2.4.3 Numerical results

The numerical results determined with RockFlow are compared to values given in [90]
in Fig. 6.2. The results show a good agreement.

Angle (°)

10
3

u x,
10

3
u y

(m
m

)

0 30 60 90 120 150 180
-2.0

-1.0

0.0

1.0

2.0

3.0
p2 u x
p2 u y
p3 u y
p4 u y
reference

Figure 6.2: Tensile test. RockFlow results and reference values taken from Schröder
(1996) [90].
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6.3 Rate-independent plasticity

In this section a short introduction to the numerical treatment of plastic material behav-
ior is given. A broad overview of theoretical and computational aspects of inelasticity
are given by Simo and Hughes (1998) [94] or by Wriggers (2001) [108].

The classical theory of plasticity expounds the idea that a linear solid passes into a
flowing state as soon as a critical state of stress is reached. The location of this stress
state is defined by the yield surface bounding the elastic region in the stress space.

Several yield surfaces are presented in Sec. 6.4.1 and Sec. 6.4.2. Formulations of elasto-
plasticity and the resulting numerical algorithms are summarized in Sec. 6.5.1 and
Sec. 6.5.2.

6.3.1 Governing equations

6.3.1.1 Additive decomposition of the strain tensor

It is assumed that the strain tensor ε can be decomposed into an elastic and a plastic
part

ε = εel + εpl. (6.11)

Since the strain tensor ε is an independent variable and the evolution of the plastic part
εpl is defined by the flow rule (6.16) given below. Eq. (6.11) defines the elastic strain
tensor with εel := ε − εpl.

6.3.1.2 Stress response

The stress tensor is related to the elastic strain εel by means of a stored energy function
W : B × S → R according to the (hyperelastic) relationship (cf. Eq. (6.2))

σ(x) =
∂W [x, εel(x)]

∂εel
. (6.12)

In linearized elasticity, the stored energy function W is a quadratic form in the elastic
strain, i.e., W = 1

2
εel : C : εel and with assumption (6.11) we get the relationship

σ = C : [ε − εpl]. (6.13)

6.3.1.3 Elastic domain and yield condition

The function f : S × R → R called yield criterion constrains the admissible states
{σ, q} ∈ S × R in stress space to lie in the set Eσ defined by

Eσ := {(σ, q) ∈ S × R | f(σ, q) ≤ 0}. (6.14)
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The interior of Eσ is called the elastic domain, whereas the boundary of Eσ, denoted by
∂Eσ and defined by

∂Eσ := {(σ, q) ∈ S × R | f(σ, q) = 0}, (6.15)

is called the yield surface in stress space. It is important to notify that states {σ, q}
outside Eσ are nonadmissable and ruled out in classical plasticity.

6.3.1.4 Flow rule and hardening law

The nature of irreversibility is defined by the equations of evolution for plastic strain
rate ε̇pl and the evolution of the internal variables q̇. The equations, called flow rule and
hardening law, are prescribed functions

ε̇pl = γ r(σ, q), (6.16)

q̇ = −γ h(σ, q), (6.17)

where r : S×R → S and h : S×R → R define the direction of plastic flow and the type
of hardening, respectively. The parameter γ is called consistency parameter and has to
obey the Kuhn-Tucker complementary conditions

γ ≥ 0, f(σ, q) ≤ 0, γf(σ, q) = 0 (6.18)

and the consistency requirement
γḟ(σ, q) = 0. (6.19)

The evaluation of condition (6.19) provides a derivation of the consistency parameter γ
and is shown in Section 6.3.1.6.

6.3.1.5 Loading/unloading conditions

The investigation of the Kuhn-Tucker conditions (6.18) and the consistency requirement
(6.19) results in the following possible situations







f ⇔ (σ, q) ∈ int(Eσ) ⇒ γ = 0 elastic,

f ⇔ (σ, q) ∈ ∂Eσ







ḟ < 0 ⇒ γ = 0 elastic unloading,

ḟ = 0 and γ = 0 neutral loading,

ḟ = 0 and γ > 0 plastic loading.

(6.20)

6.3.1.6 Consistency condition

In order to exploit the consistency requirement (6.19), the time derivative of the yield
function f at (σ, q) ∈ Eσ is evaluated

ḟ = ∂σf : σ̇ + ∂qf · q̇ (6.21)

= ∂σf : C : [ε̇ − ε̇pl] + ∂qf · q̇ (6.22)

= ∂σf : C : ε̇ − γ[∂σf : C : r + ∂qf · h] ≤ 0. (6.23)
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It can be shown that the following inequality holds for associated perfect plasticity

[∂σf : C : r + ∂qf · h] > 0, (6.24)

for all admissible states {σ, q} ∈ ∂Eσ and thus, the following equivalence can be derived
from Eq. (6.19)

ḟ = 0 ⇔ γ =
〈∂σf : C : ε̇〉

∂σf : C : r + ∂qf · h (6.25)

where 〈•〉 := [•+ | • |]/2 denotes the ramp function. In view of (6.24) and (6.25) we can
also conclude that for f = 0 and ḟ = 0

γ ≥ 0 ⇔ ∂σf : C : r + ∂qf · h ≥ 0. (6.26)

This inequality also gives a geometric interpretation of plastic (Θ < 90◦) and neutral
Θ = 90◦ loading conditions depicted in Fig. 6.3.

∂Eσ

Eσ

(σ, q)

∂σf

ε̇

Θ

Figure 6.3: Geometric interpretation of plastic loading (γ > 0) at angles Θ < 90◦.

6.3.2 Continuum elasto-plastic tangent

Using (6.13) and the flow rule (6.16) we get

σ̇ = C : [ε̇ − ε̇pl] = C : [ε̇ − γr]. (6.27)

With the substitution of γ in Eq. (6.27) by the derivation of (6.25), the change of σ in
terms of the total strain rate ε̇ is

σ̇ = C
ep : ε̇, (6.28)

where C
ep is the so-called tensor of elastoplastic moduli given by
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C
ep =







C if γ = 0,

C − C : r ⊗ C : ∂σf
∂σf : C : r + ∂qf · h if γ > 0.

(6.29)

For arbitrary r(σ, q) the elasto-plastic tangent C
ep is generally non-symmetric, except

of the case that the following equivalence holds

r(σ, q) = ∂σf(σ, q) (6.30)

which defines the associative flow rule.

6.3.3 Consistent elasto-plastic tangent

The evolution equation of plastic strain εpl and internal variables q has to be integrated
in time. Starting from the temporal discretization and the selection of an appropriate
time integration scheme outlined in Sec. 4.3, it becomes obvious that the continuum
tangent, presented in Section 6.3.2, has to be modified as it is valid only for small time
steps as ∆t → 0 comprises ∆γ → 0.

The derivation of the elasto-plastic tangent moduli reflecting the incremental character-
istic of the integration algorithm finally results in a consistent linearization. With this
consistent or algorithmic tangent at hand, a quadratic rate of (asymptotic) convergence
(see App. A.1) can be assured for the solution of the non-linear problem as described by
Simo and Taylor (1985) [95].

The procedure is equivalent with the derivation of the tangent of the continuum problem,
but additionally the algorithmic expression of σn+1 is being regarded and differentiated
with respect to the strain tensor εn+1. According to Eq. (6.27) and (6.16) the partial
derivatives of the consistency parameter γ, the direction of plastic flow r and finally
the integration algorithm itself come into play. The procedure of linearization and the
resulting algorithmic (consistent) tangent moduli in case of associative J2 flow rules with
general nonlinear kinematic and isotropic hardening are given by Simo and Taylor (1985)
[95] also mentioning non-associative pressure sensitive yield criterions (e.g. Drucker-
Prager). Derivations for the Cam-clay plasticity models are given by Borja and Lee
(1990) [12]. More details can be found in Simo and Hughes (1998) [94] or Wriggers
(2001) [108] among others.

6.4 Yield criterions for isotropic material

In this section a brief review of yield criterions is given. For isotropic materials, the
yielding only depends on the magnitudes of the principle stresses, thus the yield func-
tion f is f(I1, I2, I3). Criterions, which are dependent on deviatoric stresses, are given
in Section 6.4.1, while those criterions which also include the influence of hydrostatic
pressure are summarized in Section 6.4.2. The yield surface has been evaluated within
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a cylindrical domain around the hydrostatic axis. The segment at the upper left part of
the yield surface has been omitted for the purpose of a better visualization.

The evaluation of yield surfaces has been used for the prediction of safety factors and
threshold levels of damage in Task C of the DECOVALEX-THMC project (see [110, 84]).

6.4.1 Criterions for pressure insensitive material

For metallic material experimental evidence allows to assume that the hydrostatic pres-
sure has no effect on plastic yielding. The yield function F can be expressed by f = f(J2)
for the von Mises (Fig. 6.4) or by f = f(J2, J3) for the Tresca (Fig. 6.5) yield criterion.

-s3

-s2

-s1

-I1

I1

Figure 6.4: Yield surface of von Mises
criterion.

-s3

-s2

-s1

-I1

I1

Figure 6.5: Yield surface of Tresca crite-
rion.

6.4.2 Criterions for pressure sensitive material

The yielding of porous materials is pressure sensitive. The yield function F can be
expressed by f = f(I1, J2) representing the yield surface of the Drucker-Prager model
depicted in Fig. 6.6.

For granular media, yielding and plastic flow are known to be influenced by all three
stress invariants I1, J2 and J3, thus f = f(I1, J2, J3). The Mohr-Coulomb model or
Ehlers’s single surface model belong to this group. Their yield surfaces are depicted
exemplarily in Figs. 6.7 and 6.8.

6.5 Constitutive models with pressure insensitive

yield criterion

A broad overview of the theory of elasto-plasticity, especially metal plasticity, its algo-
rithmic formulation and numerical implementation can be found in Miehe (1993) [72] or
Simo and Hughes (1993) [94].



60 6.5 Constitutive models with pressure insensitive yield criterion

-s3

-s1

-s2

-I1

I1

-35.0

-35.0

-35.0

-35.0

-30.0

-30.0

-30.0

-30.0

-25.0

-2
5.

0

-25.0

-20.0

-20.0

-15.0

-15.0

-15.0

-10.0

0.0

45
42.5
40
37.5
35
32.5
30
27.5
25
22.5
20
17.5
15
12.5
10
7.5
5
2.5
0

− σ1

− σ2

− σ3

J2 (MPa2) I1 (MPa)

Figure 6.6: Yield surface of Drucker-Prager criterion.
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Figure 6.7: Mohr-Coulomb yield surface.
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Figure 6.8: Single yield surface. Material properties are taken from Ehlers (2002) [33]
(p. 58).
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6.5.1 Perfect plasticity – Prandtl-Reuss equation

6.5.1.1 Model formulation

The classical Prandtl-Reuss equations of perfect plasticity are derived from the following
assumptions

1. The elastic response is linear isotropic.

2. The Huber–von Mises yield condition

f(s) = ‖s‖ − R = f(J2) =
√

2
√

J2 −
√

2 R (6.31)

is used, where s is the deviatoric part of the stress tensor, R is the radius of the

yield surface defined by R =
√

2
3
σY .

3. The associated Levy–Saint Venant flow rule is used.

4. No hardening occurs i.e. h ≡ 0.

A short overview of the basic equations characterizing perfect plasticity is given in
Box. 6.1.

Box 6.1: Formulation of perfect plasticity.

Elastic strain

εel = ε − εpl

εel
v = trεel, eel = εel − 1

3
εel
v 1

Stored energy function

W = K
1

2
(εel

v )2 + G tr(eel)2

Stress

σ = K εel
v 1 + 2 G eel

Yield function

f = f(s) = ||s|| −
√

2

3
σY

Flow rule

ε̇pl = γ n, n :=
∂f(s)

∂σ
=

s

||s||
Kuhn Tucker loading/unloading conditions

γ ≥ 0, f(s) ≤ 0, γ f(s) = 0
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6.5.1.2 Consistent elasto-plastic tangent moduli

The consistent elasto-plastic tangent is

C
algo
n+1 = K1 ⊗ 1 + 2Gβn+1[II −

1

3
1 ⊗ 1] − 2Gβn+1nn+1 ⊗ nn+1 (6.32)

where

βn+1 := 1 − 2G ∆γ

‖strial
n+1‖

.

(6.33)

6.5.1.3 Algorithmic formulation

The algorithmic formulation is summarized in Box 6.2.

Box 6.2: Radial return algorithm. Perfect plasticity.

1. Trial step.

(a) ε
el,trial
n+1 = εel

n + ∆εel
n+1

(b) σtrial
n+1 = C

elε
el,trial
n+1

(c) f trial
n+1 = f(strial

n+1)

2. (a) Elastic deformation or (b) plastic correction.

(a) f trial
n+1 ≤ 0 ⇒ elastic deformation

i. σn+1 = σtrial
n+1

ii. εel
n+1 = ε

el,trial
n+1

iii. Next load step (1.)

(b) f trial
n+1 > 0 ⇒ plastic correction.

i. εel
n+1 = ε

el,trial
n+1 − ε

pl
n+1, ε

pl
n+1 = εpl

n + ∆εpl

where ∆εpl = ∆γn, n =
∂f trial

n+1

∂σtrial
n+1

=
strial

||strial||

∆γ =
f trial

n+1

2G
ii. σn+1 = σtr

n+1 − C
ep∆εpl

iii. Next iterative step (1.)

3. Next load step (1.)
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6.5.2 J2 plasticity with isotropic/kinematic hardening

6.5.2.1 Model formulation

J2 plasticity with isotropic/kinematic hardening is formulated as follows

1. The elastic response is linear isotropic.

2. The yield condition is defined by

f(s) = ‖ξ‖ −
√

2

3
Hiso(e

pl
q ) (6.34)

with ξ = s − β.

3. The flow rule is associated and a purely deviatoric plastic strain rate ėpl is derived
as follows

ėpl = γ
ξ

‖ξ‖ . (6.35)

4. Isotropic and kinematic hardening occurs. Isotropic hardening Hiso(e
pl
q ) is a func-

tion of the equivalent plastic strain epl
q . The derivative of this invariant is directly

determined by

ėpl
q = γ

√

2

3
(6.36)

using Eq. (6.35) and Eq. (C.4).

Kinematic hardening dislocates the center of the von Mises yield surface in the
deviatoric stress space and is defined by the back stress β with tr β := 0. Its
derivative is as follows

β̇ = γ
ξ

‖ξ‖
2

3
H ′

kin(e
pl
q ). (6.37)

6.5.2.2 Consistent elasto-plastic tangent moduli

The consistent elasto-plastic tangent is

C
algo
n+1 = K1 ⊗ 1 + 2Gθn+1[II −

1

3
1 ⊗ 1] − 2G θ̄n+1nn+1 ⊗ nn+1 (6.38)

where

θn+1 := 1 − 2G ∆γ

‖ξtrial
n+1‖

θ̄n+1 :=
1

1 +

[
H ′

iso(e
pl
q ) + H ′

kin(e
pl
q )

]

n+1

3G

− (1 − θn+1). (6.39)
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Box 6.3: The von Mises model with non-linear isotropic/kinematic hardening.
Radial return algorithm (cf. [94]).

1. Compute trial elastic stress.

en+1 = εn+1 −
1

3
( tr[εn+1]) 1

strial
n+1 = 2G (en+1 − epl

n )

ξtrial
n+1 = strial

n+1 − βn

2. Check yield condition.

f trial
n+1 := ‖ξtrial

n+1‖ −
√

2

3
Hiso(

[
epl

q

]

n
)

IF f trial
n+1 ≤ 0 THEN:

Set (•)n+1 = (•)trial
n+1 & EXIT.

ENDIF.

3. Compute nn+1 and find ∆γ in local iteration.

nn+1 :=
ξtrial

n+1

‖ξtrial
n+1‖

[
epl

q

]

n+1
:=

[
epl

q

]

n
+

√

2

3
∆γ

4. Update back stress, strain and stress.

βn+1 = βn +

√

2

3
[Hkin(

[
epl

q

]

n+1
) − Hkin(

[
epl

q

]

n
)] nn+1

e
pl
n+1 = epl

n + ∆γ nn+1

σn+1 = K trεn+1 1 + strial
n+1 − 2G ∆γ nn+1

5. Compute consistent elasto-plastic tangent moduli given in (6.38).

6.5.2.3 Algorithmic formulation

The algorithmic formulation is summarized in Box 6.3.
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6.6 Constitutive models with pressure sensitive

yield criterion

In this section, a short introduction to selected material models for cohesive-frictional
soils is given. For more details the reader should refer to Khan and Huang (1995) [52],
Chen and Baladi (1985) [19] or Desai and Siriwardane (1984) [28], amongst others.

The yielding of porous materials is usually characterized by a pressure sensitive behavior.
Thus, the yield criterion for these materials has to incorporate the influence of the
hydrostatic pressure. Material models of this type are for example the Mohr-Coulomb
model or the Drucker-Prager model. Both models are characterized by yield functions
that linearly depend on the deviatoric and hydrostatic parts of the stress tensor. As
these models tend to overestimate the shear strength at higher compressive mean stress,
models with a non-linear increase of shear strength, e. g. described by Ehlers (1995) [32],
are advantageous.

A significant disadvantage of the Mohr-Coulomb model emerges because of the corners
of the hexagonal yield surface leading to numerical instability. In order to avoid these
problems smooth approximations of the hexagonal yield surface have been used in Lade
and Duncan (1975) [62] and Lade (1977) [61]. A smooth yield surface that very well
approximates the Mohr-Coulomb criterion has also been presented by Matsuoka and
Nakai (1974) [71].

In more general formulation based on three invariants, the conical yield surfaces of
Drucker-Prager, Matsuoka-Nakai and Lade-Duncan can be represented and addition-
ally extended by a non-linear pressure sensitive cone. Formulations and comparative
investigation can be found in Ehlers (1995) [32] or Borja and Aydin (2004) [11], respec-
tively.

The above mentioned family of three-invariant plasticity models including a compression
cap is able to capture the entire spectrum of yielding of geomaterials including simple
shearing, pure compaction or dilation.

6.6.1 Mohr-Coulomb model

This model is based on the Coulomb friction failure law, which can be expressed in terms
of principle stresses as follows

(σ1 − σ3) = 2 C cos φ − (σ1 + σ3) sin φ (6.40)

where σ1 and σ3 are principle stresses, C is the cohesion and φ is the angle of internal
friction. For more details refer to Khan and Huang (1995) [52]. The yield function f
bounding the elastic domain (f < 0) is given by

f(σ1, σ3) = (σ1 − σ3) + (σ1 + σ3) sin φ − 2 C cos φ = f(I1, J2, J3) (6.41)
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where I1 is the first invariant of the stress tensor and J2, J3 are the second and third
invariant of the deviatoric stress tensor, respectively. As usual in continuum mechanics
the tensile stresses are positive.

With the definition of the Lode angle (cf. Fig 6.9)

cos 3 θ =
3
√

3

2

J3

J2
3/2

(0 ≤ θ ≤ 60◦) (6.42)

the principle values σ1 and σ3 can be replaced by

σ1 =
1

3
I1 +

2√
3

√

J2 cos θ (6.43)

σ3 =
1

3
I1 +

2√
3

√

J2 cos (θ + 120◦) (6.44)

and the yield function for the standard Mohr-Coulomb model finally is defined by

1

3
I1 sin φ +

√

J2

[

sin (θ + 60◦) +
1√
3

sin φ cos(θ + 60◦)

]

= C cos φ. (6.45)

6.6.2 Drucker-Prager model

6.6.2.1 Introduction

Drucker and Prager (1952) suggested the following elasto-plastic model treating the
yield surface as a smooth circular cone. The yielding is based on the following pressure
dependent yield function

f(I1, J2) = αφI1 +
√

J2 − κ (6.46)

representing a conical surface. Contrary to the von Mises yield criterion a hydrostatic
stress term appears controlled by the friction coefficient αφ. The parameters αφ and κ
can be determined in such a way that the Drucker-Prager yield surface coincides the
outer corners of the Mohr-Coulomb yield surface. If the circular cone shall coincide with
the outer apexes (yield stress in compression) of the hexagonal one of the Mohr-Coulomb
type the parameters are

αφ =
2 sin φ√

3 (3 − sin φ)
(6.47)

κ =
6 C cos φ√
3 (3 − sin φ)

. (6.48)

Further values are summarized in Table 6.4 according to Fig 6.9 for the case coinciding
with the inner apexes (yield stress in tension) and for a yield surface lying in between
or internal.
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Figure 6.9: Approximation of the Mohr-Coulomb yield criterion by a model of Drucker-
Prager type with compromise cone.

Table 6.4: Parameters of the Mohr-Coulomb yield criterion approximated by a model of
Drucker-Prager type with compromise cone.

Approximation Friction coefficient Dilatancy coefficient Cohesion parameter

Compression Cone αφ = 2 sin φ√
3 (3−sin φ)

αψ = 2 sin ψ√
3 (3−sin ψ)

κ = 6 C cos φ√
3 (3−sin φ)

Extension Cone αφ = 2 sin φ√
3 (3+sin φ)

αψ = 2 sin ψ√
3 (3+sin ψ)

κ = 6 C cos φ√
3 (3+sin φ)

Compromise Cone αφ = 2 sin φ

3
√

3
αψ = 2 sin ψ

3
√

3
κ = 6 C cos φ

3
√

3

Internal Cone αφ = sin φ√
3 (3+sin2 φ)1/2 αψ = sin ψ√

3 (3+sin2 ψ)1/2 κ = 3 C cos φ√
3 (3+sin2 φ)1/2

An illustration of a Drucker-Prager yield surface lying in between the inner and outer
edges of the Mohr-Coulomb yield surface is given in Fig. 6.10. The parameters are given
in Table 6.5.

Table 6.5: Parameters of the Mohr-Coulomb yield criterion approximated by Drucker-
Prager type.

Parameter Symbol Value
Cohesion C 1.4 MPa

Angle of internal friction φ 20o

In contrast to metals the behavior of geomaterials, e.g. dense or loose sands, show
dilatant as well as contractant behavior. In case of an associated flow rule the volu-
metric plastic strain rate is often over- or underestimated. In order to avoid this, a
non-associated flow rule is used. Here, the plastic flow is derived from a plastic potential
that differs from the yield function.
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Figure 6.10: Approximation of the Mohr-Coulomb yield criterion by a Drucker-Prager
model.

The plastic potential is

g(I1, J2) = αψI1 +
√

J2 (6.49)

where αψ is the dilatancy coefficient. An associated model with αφ = αψ would over-
estimate the dilatancy. Consequently, the dilatancy coefficient is usually chosen smaller
than the friction coefficient.

6.6.2.2 Algorithmic formulation

A short introduction of the algorithmic formulation is given here. For more details the
reader should refer to de Borst and Groen [25, 26, 27], Runesson (1987) [86], Loret and
Prevost [67, 68] or Panesso (1998) [79], amongst others. For a convenient algorithmic
formulation the yield criterion (6.46) is formulated as follows

f(σ, s) = ℓ tr σ + ||s|| − βn
2

3
(C0 + h epl

q ) (6.50)

and the plastic potential is

g(σ, s) = χ tr σ + ||s|| − βn
2

3
(C0 + h epl

q ) (6.51)

where C0 is an initial value of cohesion and h is a hardening coefficient. According to
Eq. (6.47) the coefficients ℓ and χ depend on the angle of internal friction φ and the
angle of dilatancy ψ

ℓ = 2

√

2

3

sin φ

3 − sin φ
χ = 2

√

2

3

sin ψ

3 − sin ψ
. (6.52)
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The coefficient βn (cf. Eq. (6.48)) is defined as follows

βn = 6
cos φ

3 − sin φ
. (6.53)

The flow rule, derived from the plastic potential (6.51) is

ε̇pl = γ
∂g

∂σ
= γ (χ1 +

s

||s||) = γ (χ1 + n). (6.54)

For the evaluation of the increment ∆γ, the consistency requirement (6.19) has to be
exploited using the derivative of the yield function f for tn+1 that reads

∂fn+1

∂∆γn+1

= −9 ℓ χK − 2G − βn

√

2

3
h

√

1 + 3 χ2. (6.55)

6.6.2.3 Consistent elasto-plastic tangent moduli for dilatant/contractant
plastic flow

The consistent elasto-plastic tangent is as follows

C
algo
n+1 = c1 1⊗ 1 + c2 [II− 1

3
1⊗ 1] + c3 nn+1 ⊗ nn+1 + c4 nn+1 ⊗ 1 + c5 1⊗ nn+1 (6.56)

where

c1 = 1 − 9 ℓ χK

d1

c2 = 2 G

[

1 − 2 G
∆γn+1

||strial
n+1||

]

c3 = −4G2

[
1

d1

− ∆γn+1

||strial
n+1||

]

c4 = −6 ℓ K G

d1

c5 = −6 χK G

d1

d1 = 9 ℓ χK + 2 G + βn h

√

2

3
(1 + 3χ2).

6.6.2.4 Consistent elasto-plastic tangent moduli for deviatoric plastic flow

For convenience and useful for comparison the consistent elasto-plastic tangent is also
given for a pressure sensitive yield function and a plastic flow of von Mises type (cf.
[95]). Let f be a pressure sensitive yield function of the form

f(s, σ) = ‖s‖ −
√

2

3
κ(σ) (6.57)
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where κ(σ) is a non-linear function defining a pressure sensitive yield stress. A non-
associated plastic potential g is defined by

g(s) = ‖s‖ (6.58)

Then, the resulting consistent elasto-plastic tangent is

C
algo
n+1 = K1⊗ 1 + 2Gβn+1[II−

1

3
1⊗ 1]− 2Gβn+1nn+1 ⊗nn+1 + K

√

2

3
κ′(σn+1) nn+1 ⊗ 1,

(6.59)
where

βn+1 :=

√

2

3

κ(σn+1)

‖strial
n+1‖

.

6.7 Constitutive behavior of the fluid phase

6.7.1 Equation of state for water

The density of the water can be obtained by a linearization of the equation of state

1

ρf
0

∂ρw

∂t
= K−1

w

∂pw

∂t
− βw

T

∂T

∂t
. (6.60)

where Kw is the bulk modulus of water and βT is the volumetric thermal expansion
coefficient.

6.7.2 Darcy’s law

The fluid flux in saturated porous media is described by Dracy’s law

q =
k

µl

(−∇pl + ρl g) (6.61)

which may also be derived form the macroscopic balance equation of the fluid momentum.
A modification of Darcy’s law is used for the evaluation of motion of the fluid phase
ϕα = {ϕl, ϕg} in an unsaturated porous medium. For more details see for example Bear
and Bachmat (1990) [4]. It reads as follows

Jαs = nSαρα(vα − vs) = ρα kα
relk

µα
(−∇pα + ραg) (6.62)

where the non-linear relative permeability saturation relation kα
rel(S

l) has to be defined
by separate equations, see for example van Genuchten (1980) [106].
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6.8 Fourier’s law of heat conduction

The heat flux is assumed to obey the generalized version of Fourier’s law. For the
saturated porous medium it can be formulated as follows

J t = −D∇T, D = ((1 − n)λs + nλl)1 (6.63)

where D is the second order tensor of heat conduction. For the partially saturated case
the heat flux J t is

J t = −D∇T, D = λb 1 (6.64)

where

λb = (1 − n) λs + nSlλl + nSgλg. (6.65)
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Chapter 7

Implementation

The whole is more than the sum of its
parts.

Metaphysica. Aristotle.
Greek critic, philosopher, physicist, & zoologist.

7.1 Introduction

The derived algorithms presented in the previous chapters have been implemented in
the finite element code RockFlow developed at the Institute of Fluid Mechanics and
Computer Applications in Civil Engineering. A historical view of the code has been
given in Sec. 1.3. For the application of thermo-hydro-mechanical analysis a new model
has been set up. This model and the required code improvements are described in the
following sections.

7.2 The THMplus model

For the performance of coupled thermo-hydro-mechanical analysis a new model has been
created within the framework of the finite element code RockFlow. This new model is
called THMplus . In fact, it is a sub module set-up within the model oriented approach
of RockFlow. The next sections describe both the model-oriented approach and the
processes available in the THMplus model.
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7.2.1 The model-oriented approach

The software package RockFlow has been developed in an object-oriented way. The re-
sulting structure provides all objects needed for applying the finite element method. The
main part of this structure is a set of models containing and defining the model specific
data, the objects of the algebraic equations, objects for the control of the simulation cy-
cle and finally interface functions providing access by model independent objects. These
additional objects contain the geometric description of the domain, the parameterization
of material properties, the temporal discretization, initial and boundary conditions and
the finite element formulation of the numerical problems involved.

7.2.2 Processes in the THMplus model

The new model THMplus is aimed to be the framework for the implementation of thermo-
hydro-mechanically coupled processes. The processes currently provided by the model
are listed in Table 7.1. The extension by further processes or process formulations is
possible.

Table 7.1: THMplus model. Available processes and associated keywords.
Heat transport T #PROCESS_HEAT_TRANSPORT

Fluid flow H #PROCESS_FLUID_FLOW

Solid mechanics M #PROCESS_SOLID_DEFORMATION

Matter transport + #PROCESS_MASS_TRANSPORT

A process is activated if its keyword appears in the input file followed by specific param-
eters. Couplings are activated automatically, if multiple processes exists.

For the set-up of the THMplus model some new objects had to be created and the
adaptation of existing objects was necessary. The realized developments are described
in Sec. 7.3 and Sec. 7.4, respectively.

7.3 Created RockFlow objects

7.3.1 Control of processes and couplings

An object for the control and the definition of processes has been set up. All processes
available in RockFlow are defined separately by a particular keyword (see e.g. Fig. 7.11).
Due to the existence of these keywords in the input file a process is activated in a coupled
simulation. With this approach, a fully defined multi-field problem can easily be reduced
by removing a process keyword or, vice versa, an initially defined single process can be
extended step-by-step by additional processes. The processing of an active process can
be restricted by defining the sub-keyword $ACTIVATION (see Fig. 7.11). If a process
is deactivated, its initial conditions are completely incorporated but the process itself
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remains in a steady state. Couplings of a deactivated process to other processes are
treated as if the process was active.

The control of couplings of processes is also possible. The corresponding data object is
defined by the sub-keyword $INFLUENCING PROCESSES (see Fig. 7.11). It defines
restrictions in the interaction of a single process to other coupled processes. These
restrictions can easily be incorporated into the finite element formulation. Thus, an
estimation of the sensitivity of selected couplings is possible.

7.3.2 Finite elements with quadratic shape functions

The available standard elements of RockFlow have linear shape functions. For the
hydraulic-mechanically coupled formulation elements with quadratic shape functions are
required. Thus the finite element functions for 9-node and 20-node elements has been
implemented, see Fig. 7.1. In the coupled formulation the fluid pressure is approxi-
mated linearly and the displacements are approximated quadratically. This results in
non-uniform numbers of unknowns in both processes involved and has to be taken into
account in the solving procedure.

It is possible to declare elements with coinciding nodes for the representation of de-
generated elements. This provides the possibility to compare formulations based on
quadrilateral or hexahedral elements with those of triangular, tetrahedral or prismatic
element types.

7.3.3 Mesh generation

Algorithms for complex three-dimensional grid generation for hydrogeological models
of the finite element code RockFlow have been developed by Rother (2001) [85] and
Moenickes (2004) [74]. They have been implemented in the preprocessor HGM.

In order to perform a structured mesh generation, the tool OMEGA (Open MEsh
Generation and Adaptation) has been developed and integrated in RockFlow. The
meshes used in the numerical examples presented within this work have all been gen-
erated with the meshing tool OMEGA. The mesh generation algorithms are entirely
defined by keywords which can be individually parameterized and composed by the
user. Consequently, the tool provides an optimal degree of flexibility.

7.3.4 Input data description

The availability of user manuals and its continuous update is a common problem of finite
element codes developed for research purpose. In order to avoid a necessary update of
the manual whenever a new version is released, an alternative has been developed in
terms of a self-documenting code. The basis of this feature is the availability of standard
definitions for all the input functionalities needed.
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Figure 7.1: 2-D and 3-D elements with linear (above) and quadratic (below) shape func-
tions. The location of the integration points is depicted in 2-D for a reliable integration
order of 2 × 2 for linear and 3 × 3 quadratic approximation.

For this purpose, a data base was set up by Wulkau (2005) [109]. This data base is part of
RockFlow and stores a description of the structure of the input data, its documentation
and the link to the data object that finally stores the information.

Default objects, containing the complete input description, are compiled in the data
base. During the reading of input data files, specific objects are created that contain
only the specified part of input values and its description. The data stored in the default
data objects is prepared by the developer and assembled by data base functions.

With the information provided by the data base all the input data operations performed
in RockFlow are entirely defined, for example the reading of input files or the writing of
the error message file. For documentation purposes a compilation of the default input
descriptions can be done automatically. Various configurations are provided and different
formats like XML or LaTeX are selectable.

Finally, this input data base, containing the whole structure of input data, allows lots of
potential further developments directed towards a more user-friendly finite element sim-
ulation tool. The possibility to visualize the default descriptions of individual keywords
has already been implemented in the graphical user interface. The results are presented
in Sec. 7.5.3.3.
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7.4 Adapted RockFlow objects

7.4.1 Solver object for coupled problems

The simulation of a coupled process in the framework of the THMplus model requires a
finite element data management for element and node data and for the solving procedure.
The element and node date base itself is not affected by the existence of couplings but
the finite element routines must provide the necessary coupling terms if interactions shall
be considered. Thus, coupling-specific information of the solving procedure has to be
transferred from the model to the finite element routines, to the assemble functions and
to the solver as well.

The solver data object has finally been chosen to be the central part of the coupled
solving strategy. In the solver object all the data concerning the coupling of processes is
centrally stored. Therefore, this object had to be extended in order to control all parts
of the coupled solving strategy.

7.4.1.1 Indirect solving scheme

Habbar [41] and Thorenz [101] describe the indirect solving of coupled processes. The
couplings are considered in a scheme that reiteratively solves a cycle of single processes
until the error is in an acceptable range. Using this strategy, the processes can easily
be combined. Non-linearities are handled in an iterative scheme of a Picard type. The
applicability of this approach is usually restricted to weakly coupled problems as the
scheme is only conditionally stable. For strongly coupled problems a direct scheme
should be used. Its implementation is presented in the next section.

7.4.1.2 Direct solving schemes

For the direct solving of an algebraic equation arising from a coupled finite element
formulation the solving concept had to be made more flexible. The overall procedure is
depicted in Fig. 7.2.

For each process the finite element matrices are formulated separately and assembled in-
dividually. Thus, the coupled formulation originates from process and coupling matrices
on its left hand side. The right hand side vector is a compound of load terms, terms due
to the chosen time stepping scheme or due to coupling terms which are incorporated in-
directly. After the assembly the boundary conditions for all processes are incorporated.
Due to different degrees of freedom, resulting from shape functions of different order,
the dimensions of the process unknowns are non-uniform. This has to be considered for
example whenever data is exchanged with the algebraic system of equations, for exam-
ple when the nodal values of the current time step are updated by the resulting solution
vector. An appropriate update has to be chosen according to the iterative scheme which
may be of Picard or Newton type. In order to store the information needed, a new ob-
ject containing data for each unknown was added to the linear solver object described in
Fig 7.3.
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Figure 7.2: Procedure for direct or indirect
solution of a coupled process.
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Figure 7.3: The non-linear solver object.

7.5 The graphical user interface RF+

7.5.1 Motivation and approach

The simulation of coupled processes associated with numerous pieces of different types
of information requires a possibility to check the consistency of the input data. The
graphical visualization is an important aspect in achieving this aim.

In order to assist the users as well as the developers of the finite element code RockFlow,
a framework of a graphical user interface (GUI) has been designed. The development
was guided by the following main features including

• the straightforward integration of the text terminal version of RockFlow into the
new framework,

• the independent development of both graphical user interface and RockFlow code,

• the possibility of cross-platform development allowing the development of a single
code for Windows and Linux applications,

• and finally the realization within the modern C++ programming language.
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The developed graphical user interface has been named RF+. In order to achieve a
platform independent code TROLLTECHr’s application framework Qt 3.2.1 has been
chosen.

TROLLTECHr’s Qt uses the class based programming language C++ and provides
OpenGL functionality for three-dimensional visualization in graphical applications. The
development of graphical forms for the user interface is assisted by several libraries
included in the Qt framework.

Data interfaces have been realized for the data interchange between the graphical user
interface RF+ and the object-oriented RockFlow code. The interfaces ensure an almost
independent development of the GUI code. The structure of the resulting framework,
its classes and the integration of RockFlow are described in Sec. 7.5.2. Its performance
is addressed in Sec. 7.5.3.1 and some additional features like cross-platform applicability
and the user-friendly visualization of input data are presented in Sec. 7.5.3.2 and 7.3.4,
respectively.

7.5.2 Structure of the graphical user interface

The structure of the GUI framework and its C++ classes are depicted in Fig. 7.4.

GUI_RF_MAIN_WIN: GUI_RF_MAIN_WIN_EXT

MULT_VIEW_WIN

MULT_VIEW: MULT_VIEW_CTRL
: MESH_DATA_CTRL

RockFlow
Data Access

Program Termination

Display (Standard Output)

Operational Sequence

(nodes.h, elements.h,
rfbc.h, rfsousin.h,
rfmodel.h, files.h, rftime.h)

(break.h)

display.h

(rf.h, rf_apl.h)

RF_GUI_INTERFACE

Interface functions to
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GUI_RF_INTERFACE

Interface functions to
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GUI-RF-interaction
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Information on status
of RockFlow
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Interval 0.01, ..., 60 s

yes

yes

MultView

RockFlowGUI

Figure 7.4: Classes of the GUI framework for RockFlow.
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Interface functions for the communication between GUI and the standard finite element
code ensure the possibility of a simultaneous development of both RockFlow and its
graphical user interface. The visualization is performed by the graphical output class
named MULT VIEW. This class has been developed independently from the graphical
user interface and thus could be used in further applications for graphical visualization,
for example in WaveLoads [73].

Within the developed framework the standard text based RockFlow which is still applied
as a terminal version can be integrated without adjustments. Communication and data
exchange is performed via the classes RF GUI INTERFACE and GUI RF INTERFACE,
respectively. The text output is performed by the class GUI RF TXT OUT. This class
is also assigned to accomplish file access, the colored visualization of input data and
the online documentation of keywords (see Fig. 7.11). The processing of RockFlow is
controlled by the class RF GUI CTRL. For the execution of a test cycle of benchmarks
RF+ can be started without user interference.

The fact that all resulting output files of RockFlow and RF+ are equivalent simplifies
the development of the codes and ensures the enduring consistency of both applications.

The class MULT VIEW. This class has been developed independently in the vi-
sualization project MultView. It can directly be integrated into the RF+ framework.
Its task is the visualization of one-dimensional, two-dimensional or three-dimensional
rendered or wire framed finite element objects. All the graphical objects are defined by
OpenGL functions provided by Qt. The depiction of material groups and the numbering
of nodes and elements is presented in Fig. 7.5 and Fig. 7.6.

Figure 7.5: Wire frame representation of
the finite element mesh with differently col-
ored material groups.

Figure 7.6: Selection of one material group.
Node and element numbers are visualized.

In addition, the MultView graphic allows the coloring of element surfaces for contour
plots, depicted in Fig. 7.7. The relocation of the mesh according to scaled values of,
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for example, resulting displacements, shown in Fig. 7.8, is a useful option which can
be supplemented by the setting of a light source for a realistic visualization in three-
dimensional simulations.

The class RF GUI INTERFACE and GUI RF INTERFACE. The finite ele-
ment code RockFlow is a standard text terminal window application. All code files
belonging to this base application are usually developed independently from any graph-
ical application.

For the purpose of data interchange between RockFlow and the GUI, RF+ is provided
with two interface classes called RF GUI INTERFACE and GUI RF INTERFACE.
They are able to transfer data in both directions. As these two interfaces are the only link
between graphical user interface and the finite element objects, only minor adjustments
are necessary if data objects of RockFlow has been modified.

The class RF GUI CTRL. The graphical user interface is able to process events
while the simulation is running. These events can be caused by the user or by the
running simulation of RockFlow in terms of signals indicating the completion of the
initializing process, the beginning of a new time step or the finalizing of a simulation
run.

The processing of these events results in a better control of a simulation run. The
initialization of RockFlow or the start of the simulation is controlled by events initiated
by the user. Possible events are Initialize, Run, Next Time Step, Stop or Exit. These
options enable the user to interrupt a running simulation and to continue with it after
evaluation of current results.

7.5.3 Performance of the graphical user interface

7.5.3.1 Visualization of finite element results

The development of the graphical user interface aims to give a direct and instantaneous
insight into mesh properties, material properties or initial and boundary conditions.
Additionally, it provides the visualization of all kinds of numerical results. Exemplary
visualizations are portrayed in Fig. 7.7 and Fig. 7.8. The graphical user interface cen-
tralizes all input and output files of a simulation. It provides visualizations of functional
relationships and numerous forms of facilities for a user friendly performance.

7.5.3.2 Visualization on different platforms

At all times, the finite element code RockFlow has been used on different computer
platforms. The TROLLTECHr application framework has been selected as it allows
the development of a single code for graphical applications on different platforms and
operating systems.
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Figure 7.7: Visualization of a hydrostatic
pressure field contour.

Figure 7.8: Visualization of material
groups and deformation due to gravity.
Dirichlet boundary nodes are marked by
green dots. The displacements are scaled
by the factor 1000.

Figure 7.9: Grimsel 2.75-D application
[74]. 2.5-D fracture network and its con-
centration field. Windows view.

Figure 7.10: Grimsel 2.75-D application
[74]. 3-D matrix blocks around 2.5-D frac-
ture network and its pressure field. Linux
view.
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The resulting graphical output is equivalent on different operating systems. A compari-
son of a Linux Suse 9.0 and a Windows 2000 view of an extensive finite element model
is shown in Fig. 7.9 and Fig. 7.10. Here, a 2.75-D model created by Moenickes (2004)
[74] is presented. It consists of a 2-D fracture network which is extended by 3-D matrix
elements representing the near-field rock surrounding of the fractures. For the simulation
of the transport problem grid adaptive methods implemented by Kaiser (2001) [50] have
been applied.

7.5.3.3 Visualization of the input data description of in RF+

The input data base of RockFlow is described in Sec. 7.3.4. In the graphical user interface
RF+ a visualization of an XML based keyword description has been realized. By an
interactive selection of a keyword appearing in the input data file the user can obtain
information on the parameter set of an unfamiliar keyword. The resulting description of
the keyword #SOLID_DEFORMATION is shown in Fig. 7.11.

Figure 7.11: Visualization of an XML based keyword description.
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Chapter 8

Verification benchmarks

Doubt is not a pleasant condition, but
certainty is absurd.

Voltaire.
French philosopher.

8.1 Mechanical analysis

8.1.1 Formulation of the problem

The examples in this section are concerned with linear elastic and elasto-perfectly plastic
material behavior. The governing equations of perfect elasto-plasticity are summarized
in Box 6.1.

8.1.2 Plate with a hole

The benchmark presented here has been used in the joint research project ’Adaptive
Finite-Element-Methods in Computational Mechanics’ supported by the German Na-
tional Science Foundation.

8.1.2.1 Set-up

A two-dimensional system of a quadratic steel plate with a circular hole under plane
strain conditions is stretched in one direction, see Fig. 8.1. More details on this bench-
mark and reference solutions using adaptive refinement can be found in [96].

The geometric properties and the loading are listed in Table 8.1. The results of elastic
and elasto-plastic analysis are presented in the ensuing section.
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Figure 8.1: Geometry of the plate with a hole benchmark problem.

Table 8.1: Geometry and load setup.

Parameter Value
height, width h 200 mm
radius r 10 mm
load p 100 MPa
load factor λ

8.1.2.2 Elastic analysis

As reference, the maximum vertical stress appearing at point (2) is analyzed here. The
properties of the linear elastic material are given in Table 8.2. The comparison of refer-
ence values, taken from Stein et al. 2002 [96], and the results evaluated with RockFlow
shows a good agreement (see Tab. 8.3).

Table 8.2: Material Properties.

Parameter Value
Young’s modulus E 206899.94 MPa
Poisson’s ratio ν 0.29

8.1.2.3 Elastic-perfectly plastic analysis

Here the plate is assumed to have an elastic-perfectly plastic behavior. Its material
properties are shown in Table 8.4. The analyses are performed with a monotonic and a
cyclic loading λ, respectively. First plastic deformations occur at a load step λ0 = 1.68
and the critical load is reached at λcrit. = 4.76 ([96]).
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Table 8.3: Reference values and RockFlow results (λ = 4.5).

Quantity Symbol Value
max. displacement uy

reference, [96] 0.20951 mm
RockFlow 0.20950668 mm

max. stress σyy

reference, [96] 1388.732343 MPa
RockFlow 1380.596418 MPa

Table 8.4: Material properties.

Parameter Value
Young’s modulus E 206899.94 MPa
Poisson’s ratio ν 0.29
initial yield stress σY 450.00 MPa

Results for monotonic loading. A monotonic increase of the applied load until a
maximum load of λmax = 4.65 is analyzed. During the loading phase a local unloading
occurs in point (2). The horizontal displacement ux of this point till reaching the final
sub-critical load of λ = 4.65 is shown in Fig 8.2 with the well matching reference values
added. The equivalent stress and the accumulated plastic strain fields occurring at
the final load step λmax = 4.65 are depicted in Figs. 8.3 and 8.4. The yield stress of
σY = 450 MPa is reached in almost the whole domain, thus, only an area of minor
extent remains elastic.

Displacement u x at point (2) (mm)

Lo
ad

fa
ct

or

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

1

2

3

4

5

reference
RockFlow

Figure 8.2: Monotonic loading: local unloading in point (2).
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Figure 8.3: Monotonic loading: equivalent
stress at λ = 4.65.
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Figure 8.4: Monotonic loading: accumu-
lated plastic strain at λ = 4.65.

Results for cyclic loading. A cyclic loading and unloading of the specimen is ana-
lyzed here. The variation of load λ is in a range of −4.5 to 4.5. The deformation of the
plate at several load steps is depicted in Fig. 8.5.

t = 0.25
λ = 0.45

(a)

t = 0.5
λ = 0.0

(b)

t = 0.75
λ = −0.45

(c)

t = 1.0
λ = 0.0

(d)

Figure 8.5: Cyclic loading: deformation at sequenced load steps.

The resulting displacements and stresses evaluated at the observation points (see Fig 8.1)
are depicted in Fig. 8.6 and Fig. 8.7, respectively. The mesh used here is pre-refined
around the circular hole. With the help of the pre-refinement it was possible to reproduce
the reference values correctly. These reference values have been predicted with adaptively
refined meshes and summarized in Stein et al. (2002) . The resulting equivalent stress
and the accumulated plastic strain at load step λ = 4.5 are given in Figs. 8.8 and 8.9.
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Figure 8.6: Cyclic loading: displacement ux in point (2) (a) and uy in point (4) (b).
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Figure 8.7: Cyclic loading: stress σyy in point (2).
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Figure 8.8: Cyclic loading: equivalent
stress at λ = 4.5.
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Figure 8.9: Cyclic loading: accumulated
plastic strain at λ = 4.5.

8.2 Thermo-mechanical analysis

8.2.1 Formulation of the problem

In this section, thermomechanical applications, carried out in two and three dimen-
sions, are presented. The resulting temperatures and the accompanied thermally induced
stresses are compared to analytical solutions. For convenience, the formulation of two-
and three-dimensional thermo-elasticity is summarized in Appendix C.2.

8.2.2 Stress concentrations around cavities in a steady heat
flow

The basis of this benchmark is the analysis of thermal stresses, which are induced by the
disturbance of a uniform heat flow through a domain of infinite extent. The origin of
the disturbance are single cavities in the solid material acting like obstacles in the heat
flow and creating peaks in the temperature and stress fields. Solutions for this problem
of thermo-elasticity for differently shaped cavities can be found in [39] and [102] or in
the collection of Kachanov et al. (2003) [49].

8.2.2.1 Analytical solution

A steady heat flow with gradient τ in an infinite domain of thermo-elastically responding
porous material is assumed. The heat flow is disturbed by a spherical or cylindrical cavity
of radius a. The analytical solutions of this coupled problem are given by Florence and
Goodier (1959) [39]. Their derivations for two and three dimensional cavities lead to the
following equations.



8.2 Thermo-mechanical analysis 91

Analytical three-dimensional solution. The temperature and stresses in spherical
coordinates (r, θ, ϕ) defined in Fig 8.10 are as follows:

T (r, θ) = τ (r +
a3

2r2
) cos θ (8.1)

σθθ = σϕϕ = − E

4(1 − ν)
αT τ a (

a2

r2
+

a4

r4
) cos θ (8.2)

σmax =
1

2
E αT τ a / (1 − ν) (8.3)

T z= t (undisturbed heat flow)

z

a

q

r

Figure 8.10: Heat flow around spherical cavity.

Analytical plane stress solution. The temperature and stresses in cylindrical coor-
dinates (r, ϕ, z) defined in Fig 8.11 are as follows:

T (r, ϕ) = τ (r +
a2

r
) sin ϕ (8.4)

σϕϕ = −1

2
E αT τ a (

a

r
+

a3

r3
) sin ϕ (8.5)

σmax = E αT τ a (8.6)

Analytical plane strain solution. The resulting values for the plane strain state are
achieved by replacing E and αT according to Appendix C.2:

T (r, ϕ) = τ (r +
a2

r
) sin ϕ (8.7)

σϕϕ = − E

2(1 − ν)
αT τ a (

a

r
+

a3

r3
) sin ϕ (8.8)

σmax = E αT τ a / (1 − ν) (8.9)
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T y= t (undisturbed heat flow)

y
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j

r

x

Figure 8.11: Heat flow around 2-D circular hole.

8.2.2.2 Numerical simulation

According to the analytical solutions, it can be seen that the stress concentration to-
wards the cavity is a fourth order function in case of a spherical shape but only a third
order function in case of a circular shape. The stress increase is caused by the temper-
ature disturbance around the cavity. This disturbance reduces cubically with the radial
distance to the sphere but quadratically with the distance to the circular shaped cavity.
Consequently, the resulting maximum stress at the surface of the circular cavity is two
times higher than the stress at the sphere’s surface.

Due to the above mentioned reasons, the size of the domain for the circular case is chosen
four times larger than the domain used for the spherical case. The mesh properties for
three cases (a) spherical cavity, (b) circular cavity in two dimensions and (c) in three
dimensions are summarized in Table 8.5.

Table 8.5: Model geometry and mesh size.

Type of model realization

Value Spherical cavity Circular hole 2-D Circular hole 3-D

Radius, a 0.01 m 0.01 m 0.01 m

Size

max x 10 ×a 40 ×a 40 ×a

max y 10 ×a 40 ×a 40 ×a

max z 10 ×a 1 ×a

Number of elements 4416 2064 4128

The chosen material and heat flow parameters are given in Table 8.6. Using these
parameters, the maximum values stress and temperature are estimated and presented in
the next sections and finally summarized in Table 8.7.
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Table 8.6: Material and heat flow parameters.

Parameter Value

Young’s modulus E 206900.0 MPa

Poisson’s ratio ν 0.29

Linear thermal expansion αT 1.2 × 10−6 K−1

Heat flow gradient τ 100 K m−1

Three-dimensional analysis of the spherical cavity problem. Due to symmetries
in the xy-plane as well as in the yz-plane only a quarter of the whole domain is analyzed
as depicted in Fig. 8.12. The disturbance of the heat flow and the caused variation in
temperature gradients around the sphere is visualized in Fig. 8.13. Analytical solution
and numerical results of temperature and stress σxx are depicted in Figs. 8.14 and 8.15
along the central axis or the sphere’s surface, respectively (gray line). The comparison
of both values indicates that the refinement at the sphere’s surface is not yet sufficient
for an exact peak stress prediction.

Figure 8.12: 3-D spherical cavity. Domain
with colored near field.
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Figure 8.13: 3-D spherical cavity. Temper-
ature in the near field.
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Figure 8.14: 3-D spherical cavity. Stress σxx versus height in the near field.
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Figure 8.15: 3-D spherical cavity. Temperature versus height in the near field.

Two-dimensional analysis of the circular cavity problem in plane strain con-
ditions. A circular cylinder with infinite length in the third direction is assumed. Due
to the symmetry, the system can be reduced as depicted in Fig. 8.16. The increase in
temperature due to the cylindrical obstacle in the heat flow is two times higher than
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the increase around a spherical obstacle (cf. Table 8.7). The extensive disturbance be-
comes obvious in Fig. 8.17. Finally, the extension of the mesh size by a factor of four,
in comparison to the 3-D case, generates reasonable results (Figs. 8.18 and 8.19).

Figure 8.16: 2-D circular hole. Domain
with colored near field.
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Figure 8.17: 2-D circular hole. Tempera-
ture in the near field.
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Figure 8.18: 2-D circular hole. Stress σxx

in the near field.
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Figure 8.19: 2-D circular hole. Tempera-
ture versus height in the near field.
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Three-dimensional analysis of the circular cavity problem in plane strain
conditions. The three-dimensional analysis presented here has been carried out for
reasons of comparison only. While the temperature values are equal (Fig. 8.22), slight
differences in stress analysis (Fig. 8.23) become apparent when the maximum values in
Table 8.7 are compared.

Figure 8.20: 3-D circular hole. Domain
with colored near field.
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Figure 8.21: 3-D circular hole. Stress σxx

in the near field.
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Figure 8.22: 3-D circular hole. Stress σxx

versus height in the near field.
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Figure 8.23: 3-D circular hole. Tempera-
ture versus height in the near field.
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8.2.2.3 Conclusions

For the purpose of comparison, the analytical results and the numerical approximations
at crucial points at the surface of the cavities are summarized in Table 8.7. The tem-
perature values are approximated very well, while the correct approximation of the peak
stress values requires a better mesh refinement towards the cavity surface.

Table 8.7: Comparison of analytical and numerical results.

Type of model realization

Value Spherical cavity Circular hole 2-D Circular hole 3-D

Temperature at

cavity’s surface

analytical 1.5 ◦C 2.0 ◦C 2.0 ◦C

RockFlow 1.4993 ◦C 1.9934 ◦C 1.9934 ◦C

Peak stress at

cavity’s surface

analytical 1748.5 kPa 3496.9 kPa 3496.9 kPa

RockFlow 1516.7 kPa 3183.6 kPa 3184.1 kPa
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8.3 Hydraulic-mechanical analysis of saturated

porous media

8.3.1 Formulation of the problem

In case of a fully saturated medium (Sl = 1) the solid phase (ϕs) and the liquid phase (ϕl)
in the pore space is considered. The resulting set of governing equations is summarized
in Box 8.1.

Box 8.1: The hydraulic-mechanically coupled single-phase flow problem. Set of
governing equations.

I. Balance equations

Conservation of mass (volumetric form) – Eq. (2.45)

∇ · (n vl s)
︸ ︷︷ ︸

q

+S
∂pl

∂t
− nβl

T

∂T

∂t
− βs

T (α − n)
∂T

∂t
+ α ∇ · ∂u

∂t
= 0

Conservation of linear momentum – Eq. (3.4)

∇ ·
(

σ − α pl 1
)

+ ρb g = 0

II. Constitutive equation

Fluid flux – Eq. (6.61)

q =
k

µl
(−∇pl + ρl g)

Effective stresses – Eq. (3.1)

σ = λ tr εel 1 + 2G εel

8.3.2 One-dimensional consolidation of a saturated column

This benchmark comprises a one-dimensional consolidation problem taken for compar-
ison against an analytical solution. The consolidation takes place in a porous column
bounded by rigid and impermeable walls. On the top which is free to drain a load σ0 is
applied. The column is of height H. The set-up of the consolidation problem is depicted
in Fig. 8.24.
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x = 0

x

x = H

p = 0

σ̄

Figure 8.24: One-dimensional consolidation. Geometry and boundary conditions.

8.3.2.1 Analytical solution

The boundary and initial conditions of the problem according to Fig. 8.24 are defined
by

σ = −σ̄, p = 0 on x = 0 (8.10)

u = 0,
∂p

∂x
= 0 on x = H (8.11)

∂u

∂x
= 0 in (0, H) for t = 0. (8.12)

An analytical solution for this initial boundary value problem has been given by Murad
and Loula (1992) [76]. It can be formulated as follows

σ∗ = −1 +
∞∑

n=0

2

M
sin(M x∗) e−M2 t∗ (8.13)

u∗ = 1 − x∗ −
∞∑

n=0

2

M2
cos(M x∗) e−M2 t∗ (8.14)

p∗ =
∞∑

n=0

2

M
sin(M x∗) e−M2 t∗ (8.15)

where

x∗ = x/H, t∗ = (λ + 2G)k t / µwH2, M =
1

2
π(2n + 1) (8.16)

are non-dimensional quantities, and

σ∗ = σ/σ̄ u∗ = u (λ + 2G) / σ̄ H, p∗ = p/σ̄ (8.17)

are non-dimensional effective stress, displacement and pore pressure, respectively.



100 8.3 Hydraulic-mechanical analysis of saturated porous media

8.3.2.2 Numerical results

The geometric and material properties chosen for this benchmark are summarized in
Table 8.8. The numerical simulation is performed on a two-dimensional mesh discretized
by 100 quadrilateral elements. The total simulation time is 100 s. In order to cope with
the strongly time dependent behavior of this problem, the discretization in time has been
adapted. The time step lengths are the following: 10 × 0.01 s, 9 × 0.1 s, 9 × 1.0 s and
9 × 10.0 s.

Table 8.8: One-dimensional consolidation. Geometry and material properties.

Parameter Value Unit

Height H 1.0 m

Young’s modulus E 3.0 × 104 MPa

Poisson’s ratio ν 0.2

Permeability k 1.0 × 10−10 m2

Water viscosity µw 1.0 × 10−3 Pa s

In Fig. 8.25 the resulting numerical approximation of fluid pressure, vertical stress and
vertical displacement along the column depth x is depicted for several time steps. Some
discrete points of the analytical solution are added. The comparison of the analytical
values and the numerical predictions of RockFlow shows a satisfying agreement.
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Figure 8.25: One-dimensional consolidation. Fluid pressure p (a), stress σ (b) and
vertical displacement u (c) (ordinate) versus depth (abscissa) of deformable column.
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8.4 Hydraulic-mechanical analysis of partially satu-

rated porous media

In partially saturated soil mechanics it is difficult to find suitable tests for the verification
of numerical formulations and algorithms. Thus, the examples presented in this section
are compared against simulated reference values taken from the literature. The example
of localization analysis of a rigid footing in Sec. 8.4.3 consist of several variations that
are intended to demonstrate specific effects arising from the fluid-solid coupling of plastic
soils.

8.4.1 Formulation of the problem

In case of a partially saturated (Sl +Sg = 1) medium, the solid phase (ϕs) and the volu-
metric sum of water (w) and air (a) in the liquid (l) and in the gaseous (g) phase have to
be considered. We employ the Richards’s approximation, i.e. air remains at atmospheric
pressure and the multiphasic flow can be represented in a single-phase formulation. The
resulting set of governing equations is summarized in Box 8.2.

8.4.2 Liakopoulos experiment

In this section, multiphase flow in a deforming porous medium is studied. The pre-
sented test example is a drainage test based on an experiment by Liakopoulos (1965)
[66]. Desaturation takes place due to gravitational effects. This example was studied
previously by several authors, for example Liakopoulos [66], Narasimhan & Witherspoon
[77], Zienkiewicz et al. [112] or Schrefler & Zhan [89]. Therefore, this example is well
suited as benchmark, despite the lack of any analytical solutions for this type of coupled,
non-linear problems.

The physical experiment of Liakopoulos was conducted in a column packed with so-called
Del Monte sand. Moisture content and tension at several points along the column were
measured with tensiometers (cf. Figs. 8.27 and 8.26).

The capillary pressure pc(S
w) is a function of the saturation and can be given as

pc =

(
1 − Sw

1.9722
× 1011

) 1
2.4279

Pa (8.18)

as well as the relative permeability relationship krel(S
w)

kw
rel = 1 − 2.207(1 − Sw)1.0121 m2. (8.19)

These equation fits the measured data in case of saturations larger than 0.84 and are
therefore suitable for the following numerical simulation.
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Box 8.2: Thermally affected hydraulic-mechanically coupled multi-phase flow.
One-phase flow formulation (Richards’s approximation). The solid grains are

assumed to be incompressible (α = 1) and the effects of thermal expansion are
neglected in the fluid phase. Set of governing equations.

I. Balance equations

Conservation of mass (volumetric form) – cf. Eq. (2.56)

nSw 1

Kw

∂pw

∂t
+ n

∂Sw

∂pw

∂pw

∂t
− (Sw βs

T (1 − n) + nSwβw
T )

∂T

∂t

+
1

ρw
∇ · Jw s + Sw ∇ · ∂u

∂t
= 0.

Conservation of heat energy – cf. Eq. (2.62)

((1 − n)csρs + n (Sw cwρw + Sg cgρg))
∂T

∂t
+ ∇ · J t + cwJw s · ∇T = 0.

Conservation of linear momentum – Eq. (3.7)

∇ · (σ − α Swpw 1) + ρb g = 0

II. Constitutive equations

Fluid flux – cf. Eq. (6.62)

Jws = nSwρw(vw − vs) = ρw kw
relk

µw
(−∇pw + ρwg)

Effective stresses – Eq. (3.1)

σ = λ tr εel 1 + 2G εel

where

εel = ε − εt εt = αT (T − Tref) 1

in case of thermal expansion or in case of plastic deformations

εel = ε − εpl εpl = epl + εpl
v .

Heat conduction – cf. Eq. (6.64)

J t = −D∇T, D = λb 1

where λb = (1 − n)λs + n Swλw + n Sgλg.
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Figure 8.26: Hydraulic head versus wa-
ter content, with Ψ = pw/ρwg and
θ = nSw ([66]).

Figure 8.27: Hydraulic conductivity versus
pressure, with K = kρwg/µw and Ψ = pw/ρwg
([66]).

The model set-up is depicted in Fig. 8.28. The material parameters, taken from Lewis
and Schrefler (1998) [64], are summarized in Tab. 8.9.

0.1 m

0.1 m

1.0 m

S t
w
( ) = 1.00

free outflow

Figure 8.28: Liakopoulos experiment. Set-up.
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Table 8.9: Liakopoulos benchmark. Material properties.
Parameter Value Unit
Young’s modulus E 1.3 MPa
Poisson’s ratio ν 0.4
Solid grain density ρs 2000 kg m−3

Liquid density ρw 1000 kg m−3

Porosity n 0.2975
Permeability k 4.5 × 10−13 m2

Water viscosity µw 10−3 Pa s
Gravity g 9.806 m s−2

In Figs. 8.29 and 8.30 the numerical results are shown: water pressure pw, water sat-
uration Sw and vertical solid displacement us

z along the column height. The reference
values, taken from [64], are very close to the RockFlow results.
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Figure 8.29: Liakopoulos experiment. Water pressure pw versus height (abscissa) of
deformable column (t = {5 s, 10 s, 20 s, 30 s, 1 min, 2 min, 3 min, 5 min, 10 min, 20 min,
30 min, ..., 120 min and 24 h}).
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Figure 8.30: Liakopoulos experiment. Water saturation Sw (a) and vertical displacement
us

z (b) (ordinate) versus height (abscissa) of deformable column (t = {5 s, 10 s, 20 s, 30 s,
1 min, 2 min, 3 min, 5 min, 10 min, 20 min, 30 min, ..., 120 min and 24 h}).
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8.4.3 Localization analysis in a rigid footing

8.4.3.1 Introduction

In the present section, multiphase flow in an elasto-plastic porous medium is considered.
Geometrically linear and non-linear analysis of the problem presented here can be found
in Steinmann (1999) [97] and Sanavia et al. (2002) [87], respectively.

The following example is a square domain investigated under plane strain conditions and
loaded by a rigid footing. The footing is represented by a prescribed time dependent
displacement boundary condition. The model set-up is depicted in Fig. 8.31.

10.0 m

uy = 0

ux = 0

p

x

y

u

p0

5.0 m

1
0
.0

 m

Figure 8.31: Rigid footing. Set-up.

The material is assumed to be perfectly plastic. A von Mises material type has been
chosen as a reference material. Additionally, the Drucker-Prager type material has been
used to show dilatant and contractant behavior that initiates direct interactions from
the mechanical problem to the flow problem. The material properties are summarized
in Table 8.10.

8.4.3.2 Non-dilatant plastic material

The numerical simulations presented in this section have been performed in order to
provide reference results using a standard plastic material of von Mises type.

Undrained conditions. A comparison of the fully saturated and the partially satu-
rated formulation is shown in Figs. 8.32 -8.35. Due to the chosen von Mises material
without plastic dilatancy the pressure field or the saturation field are not affected by
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Table 8.10: Rigid footing. Material properties.
Parameter Value Unit
Young’s modulus E 10.0 MPa
Poisson’s ratio ν 0.3
Solid grain density ρs 2000 kg m−3

Liquid density ρw 1000 kg m−3

Porosity n 0.2
Permeability k 1.0 × 10−11 m2

Water viscosity µw 10−3 Pa s
Gravity g 9.806 m s−2

plastic deformation. Only little positive volumetric elastic response can be identified in
the top left-hand corner. Here a temporary suction of p = −2.0 kPa can be observed.
Consequently, both formulations show almost the same results in the pressure field and
in the plastic zone.
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0
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Figure 8.32: Fully saturated flow formu-
lation. Fluid pressure field using the von
Mises yield criterion.
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Figure 8.33: Partially saturated flow formu-
lation. Fluid pressure field using the von
Mises yield criterion.

Drained conditions. The plastic behavior of a partially saturated medium shall be
investigated. The medium is assumed to have the same property of capillary pressure
and relative permeability as the Del Monte sand applied in Sec. 8.4.2. The simulation
starts with an initial saturation of 90% (p0 = −10 kPa). A boundary conditions of
suction of p = −10 kPa is prescribed at the left half of the top boundary.

As the von Mises model, predicting no volumetric plastic strain, is used here, only minor
coupling effects can be identified in the saturation field. Nevertheless, low volumetric
elastic strain rates within the plastic zone become apparent in the pressure/saturation
field. The maximum extent at time step t = 150 s is shown in Figs. 8.36 and 8.37.
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Figure 8.34: Fully saturated flow formula-
tion. Equivalent plastic strain using the von
Mises yield criterion.
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Figure 8.35: Partially saturated flow formu-
lation. Equivalent plastic strain using the
von Mises yield criterion.
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Figure 8.36: Partially saturated rigid foot-
ing. Fluid pressure using the von Mises
yield criterion.
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Figure 8.37: Partially saturated rigid foot-
ing. Fluid saturation using the von Mises
yield criterion.

8.4.3.3 Analysis of a dilatant/contractant plastic material

In this section the Drucker-Prager plasticity model is used. In case of plastic deforma-
tion, positive or negative volumetric plastic strain rates occur, characterizing dilatant or
contractant behavior, respectively. The material is dilatant if the angle of dilatancy ψ is
positive.

Comparison of dilatant and contractant material behavior. Dilatant material
behavior with an angle of dilatancy ψ = 10◦ is depicted in Fig. 8.38 and Fig. 8.39. The
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equivalent contractant behavior with a negative angle of dilatancy ψ = −10◦ is depicted
in Fig. 8.40 and Fig. 8.41. The fluid velocity is represented by blue arrows indicating
the dilatent or contractant behavior in the shear zone.

In can be seen that the extent of the shear zone is affected by the increase or decrease of
fluid pressure accompanied by changes in the effective mean stress. The effective mean
stress finally influences the shear strength of the material defined by the conical yield
surface of the Drucker-Prager model.
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Figure 8.38: Saturated rigid footing. Fluid
pressure and fluid velocity in a dilatant
Drucker-Prager material.
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Figure 8.39: Saturated rigid footing. Accu-
mulated volumetric plastic strain and fluid
velocity in a dilatant Drucker-Prager mate-
rial.
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Figure 8.40: Saturated rigid footing. Fluid
pressure and fluid velocity in a contractant
Drucker-Prager material.
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Figure 8.41: Saturated rigid footing. Accu-
mulated volumetric plastic strain and fluid
velocity in a contractant Drucker-Prager
material.



Chapter 9

Applications

We can’t solve problems by using the
same kind of thinking we used when we
created them.

Albert Einstein (1879 - 1955).

9.1 Coupled linear analysis of saturated poroelastic

media

9.1.1 Poro-elastic consolidation – strip footing

9.1.1.1 Introduction

The examples presented in this section are a two dimensional plane strain and a three
dimensional poro-elastic consolidation. In both examples the vertical load of a strip
footing is assumed to act on the soil represented by a fluid-filled porous solid. The
effects of gravitational forces remain disregarded.

Due to the load, the saturated porous medium beneath the footing is compressed and
the pore fluid is pressed out. Consequently, the effective stresses in the porous structure
are increasing in the same way as the fluid pressure is decreasing.

Among others, this test benchmark was studied by Lewis and Schrefler (1989) [64] or
Korsawe et al. (2006) [59]. Thus, the benchmark is ideal to study solver characteristics
for coupled systems. The two-dimensional and three-dimensional simulations are carried
out with meshes of equal element sizes in order to receive comparable results.

111
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9.1.1.2 Strip footing. Geometry and model set-up

In Fig. 9.1 the set-up of the strip footing consolidation problem is depicted and the
simulation and mesh data is given in Table 9.1. The material parameters for the footing
benchmarks are summarized in Table 9.2.

8.0 m
5

.0
 m

1000 N/m

u ux y= = 0

u ux y= = 0

p = 0 Pa

x

y

1.0 m

Figure 9.1: Geometry and boundary conditions.

Table 9.1: Strip footing. Mesh properties and temporal discretization.

Parameter Symbol Value

Element size ∆x = ∆y 0.125 m

Element size ∆z 0.5 m

Degr. of freedom #DOF 2d 23563

Degr. of freedom #DOF 3d 94986

Time step length ∆t 1 s

Table 9.2: Strip footing. Material properties.

Parameter Symbol Value

Young’s modulus E 30.0 MPa

Poisson’s ratio ν 0.2

Permeability k 1.0 × 10−10 m2

Water viscosity µw 10−3 Pa s

Gravity g 0.0 m s−2

Biot coefficient α 1.0
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9.1.1.3 Numerical results

The consolidation process is illustrated in Fig. 9.2 presenting the deformed mesh (left)
and the fluid pressure field added by fluid velocity vectors (right). As expected, two and
three dimensional simulations show identical results. The resulting pressure fields are
also given in Fig. 9.4. Fluid pressure and stress distributions along the vertical cross
section at x = 0 m are depicted in Fig. 9.3. The results agree well with those of Lewis
and Schrefler (1998) [64] or Korsawe et al. (2006) [59].
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Figure 9.2: Mesh, fluid velocity and pressure field for t = 10 s.
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Figure 9.3: Fluid pressure (left) and stress σyy (right) along vertical cross section at
x = 0 m for time steps 1, 10, 20 and 100 s evaluated in two (solid line) and three (dashed
line) dimensional simulations.
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Figure 9.4: Pressure fields of two and three dimensional consolidation at t = 100 s.
Displacements are scaled by factor 10.

9.1.2 Transport in an incompressible hydraulic system

9.1.2.1 Introduction

The example presented here is a hydro-mechanically coupled system with solute trans-
port. A poro-elastic medium is filled with fluid that contains matter of different con-
centrations in its three parts depicted in Fig. 9.5. A prescribed cyclic displacement on
top of the left cylinder generates a compression of the porous solid that results in a
change of fluid pressure and a simultaneous expansion of the right cylinder. This cyclic
compression and expansion causes a transport of solute and a continuous mixing.

9.1.2.2 Geometry and model set-up

The initial concentration and the discretized domain is depicted in Fig. 9.6. The joining
element is assumed to have a significantly higher stiffness than the left and the right
cylinder. Thus, its deformations are negligible. The porosity in the joining element is
only n = 0.1 which leads to an increase in fluid velocity compared to other bodies. Thus,
the advective transport is more dominant here. The material properties of solid medium
and liquid phase are summarized in Table 9.3.

9.1.2.3 Numerical results

In addition to the visible coupling effects shown in Fig. 9.7, the results of a converging
concentration and constant displacement maxima and minima presented in Fig. 9.8 can
be interpreted as evidence of a correct conservation of fluid mass and solute matter,
respectively.
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Figure 9.5: Model set-up.
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Figure 9.6: Domain and initial concentra-
tion.

Table 9.3: Hydro-mechanically coupled transport: material parameters.

Parameter Symbol Values

left cylinder right cylinder joining element

Young’s modulus E 100 MPa 100 MPa 100 GPa

Poissons’s ratio ν 0.2 0.2 0.2

Porosity n 0.9 0.9 0.1

Permeability k 1 × 10−10 m2 1 × 10−10 m2 1 × 10−10 m2

water

Diffusion coeffic. D 1 × 10−8 m2 · s−1

Dispersion length β 0.05 m

Water viscosity µ 10−3 Pa · s
Gravity g 0.0 m · s−2
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Figure 9.7: Deformed domain and concen-
tration after 2.25 cycles at 540 s.
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9.2 Coupled analysis of thermo-poroelastic media

9.2.1 DECOVALEX-III – Task 3

9.2.1.1 Introduction

The DECOVALEX project is an international cooperative project initiated by SKI, the
Swedish Nuclear Power Inspectorate, with participation of several international organi-
zations. The general goal is to encourage multidisciplinary interactive and cooperative
research on modeling coupled processes in fractured rocks and buffer materials, in sup-
port of the performance assessment for radioactive waste storage.

In the present section, the Benchmark Test 1 - Part B (BMT 1-B) is described. This
benchmark is part of Task 3 within DECOVALEX-III. It is concerned with thermo-
hydro-mechanical simulation of a repository. The definition of the benchmark is based on
a hypothetical set-up of a nuclear waste repository described in Nguyen et al. (2003) [78].
The part B of BMT 1 consists of performing scoping calculations for a typical repository
in a homogeneous rock, in order to look at the implications of THM coupling on safety
issues related to the near-field. The results given here are restricted to thermomechanical
analysis.

9.2.1.2 Geometry and model set-up

The geometry of a typical tunnel of a hypothetical repository is depicted in Fig. 9.9
located in 1000 m depth. Due to symmetry conditions only a quarter of the whole
domain need to be analyzed. For thermal and thermomechanical analysis two meshes of
different discretizations have been used. The model consists of the following materials:
homogeneous rock mass, backfill, buffer, waste and overpack. The material properties
are listed in Table 9.4.

Table 9.4: Task 3. BMT 1-B. Material properties.

Material parameter Rock mass Backfill Buffer Waste &
overpack

Youngs modulus, E (MPa) 61.0 × 103 5.0 100.0 200.0 × 103

Poissons ratio, ν 0.303 0.4 0.4 0.3
Thermal exp. coeff., αT (K−1) 8.21 × 10−6 8.21 × 10−6 8.21 × 10−6 1.64 × 10−6

Effective porosity, n (%) 0.379 30 20 0.0379

Density, ρ (kg/m3) 2746 1750 1800 7800
Specific heat, c (J/(kgK) 900 826.087 826.087 460
Thermal conduct., λ, (W/mK) 2.6 1.46213 1.36760 53

The initial conditions and the boundary conditions to be applied for excavation and
transient analysis are depicted in Fig. 9.10. For the transient analysis a heat source
boundary has to be prescribed according to the heat output curve shown in Fig. 9.11.
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Figure 9.9: Task 3. BMT 1-B. Conceptual design of a hypothetical repository [47] (a).
Conceptual representation of repository near-field (b). Near-field parts of the fine mesh
for temperature analysis consisting of waste/overpack, buffer, fracture, backfill and rock
mass (c). Mesh used for thermomechanical analysis (d).
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Figure 9.10: Task 3. BMT 1-B. Initial and boundary conditions prescribed for excavation
(left) and ensuing transient analysis (right).

9.2.1.3 Results of transient thermal analysis

Two reasonable scenarios for the initial state are possible: (i) a steady state heat flow
according to the boundary conditions for the excavation phase given in Fig. 9.10 (left)
or (ii) starting with an initial temperature of 45 ◦C in the whole domain assuming a
short excavation phase with minor influence on the temperature of the far-field. Here
the results of case (ii) are presented. In order to verify a sufficient mesh quality, the
thermal analysis is performed on a finer mesh than the thermomechanical analysis. The
resulting temperature is depicted in Fig. 9.11.
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Figure 9.11: Heat output curve, resulting temperature curve (a) and temperature in the
near-field after 30 years (b).
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9.2.1.4 Results of transient thermo-mechanical analysis

The temperature and stress fields resulting from the thermo-mechanical analysis at time
t = 10 years are depicted in Fig. 9.12. The resulting temperature and stress curves at
selected points in the buffer (B1, B2, B8 cf. Fig. 9.10) are given in Fig. 9.13 and Fig. 9.14.
The heat producing waste affects the temperature field. Starting with an assumed initial
temperature of 45 ◦C a maximum temperature is predicted and the influence on the
mechanical behavior of the solid structure can be seen. Effects of vaporization of water
or vapor transport are not incorporated.
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Figure 9.12: Temperature field (a), horizontal stress σxx (b) and shear stress σzx (c) after
10 years.
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9.2.2 Density driven flow in a thermo-poro-elastic medium

9.2.2.1 Introduction

In geothermal applications heat transport by injected water mass is the main pro-
cess. Nevertheless, density driven flow may occur due to density gradients in the fluid
caused by thermal expansion. The process of thermal convection in a thermo-hydro-
mechanically coupled porous medium is presented in this example.

9.2.2.2 Geometry and model set-up

The schematic set-up of the model is depicted in Fig. 9.15. Its three-dimensional rep-
resentation is illustrated in Fig. 9.16. On the right hand side a constant temperature
of 45 ◦C is prescribed representing a geothermal activity. A cooling on the left hand
side, prescribed by a constant thermal heat sink, represents an extraction well. The fluid
volume remains constant as no fluid is injected or extracted. The solid material is chosen
to be equivalent to rock mass but with higher porosity n and significantly higher perme-
ability k. The fluid is supposed to be water. The material properties are summarized in
Table 9.5.

1 m

0.50 m Temperature TCooling
(Heat exchanger)

Figure 9.15: Torus. Set-up. Figure 9.16: Torus. Mesh of differently col-
ored partitions.

9.2.2.3 Results of thermo-hydro-mechanical analysis

The fluid flow in the torus is controlled by density gradients. The circulating fluid
causes an advective transport of heat energy. The fluid flow field is in a steady state as
soon as the thermal flow has heated up the system according to its specific heat. The
resulting steady state fields of temperature and displacement are depicted in Fig. 9.17
and Fig. 9.18.
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Table 9.5: Material properties.

Material parameter Symbol Value

Rock

Youngs modulus E 61.0 × 103 MPa

Poissons ratio ν 0.303

Thermal expansion coeff. αT 8.21 × 10−6 K−1

Porosity n 0.1

Permability k 1 × 10−7 m2

Density ρs 2746 kg m−3

Specific heat cs 900 J kg−1 K−1

Thermal conductivity λs 2.6 W m−1 K−1

Water

Viscosity µw 10−3 Pa s

Density ρw 1000 kg m−3

Specific heat cw 4200 J kg−1 K−1

Thermal conductivity λw 0.6 W m−1 K−1

45.00
44.75
44.50
44.25
44.00
43.75
43.50
43.25
43.00
42.75
42.50
42.25
42.00
41.75
41.50
41.25
41.00

Temperature (°C)

Figure 9.17: Resulting steady state temper-
ature field.
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Figure 9.18: Resulting steady state dis-
placement field.
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9.3 Coupled analysis of partially saturated thermo-

elastic and elasto-plastic media

This section is concerned with fully coupled thermo-hydro-mechanical modeling com-
bined to non-linear flow and deformation processes. Non-linearities occur due to flow in
partially saturated media, saturation induced swelling of expansive material or elasto-
plastic behavior of fully or partially saturated soils.

9.3.1 DECOVALEX-THMC – Task D

9.3.1.1 Introduction

The application presented in this section originated in the framework of the
DECOVALEX-THMC international project which is a continuation of the project
DECOVALEX-III. It has been introduced in Sec. 9.2.1. The latter is a multi-disciplinary
interactive and co-operative research effort in modeling Thermo-Hydro-Mechanical-
Chemical (T-H-M-C) processes in fractured rocks and buffer materials. In addition
to coupled code development, the project investigates the role of T-H-M-C processes in
Performance Assessment (PA) for radioactive waste storage.

In the recent project stage of DECOVALEX-III the THM modeling work on two large-
scale in situ heater experiments had been included: the FEBEX experiment at Grimsel in
Switzerland and the Drift Scale Test (DST) at Yucca Mountain in the USA. In continua-
tion, the new project DECOVALEX-THMC applies the knowledge gained from modeling
the above mentioned short-term in situ tests, with a test period between one and eight
years, to the evaluation of long term processes. Two generic repository types are con-
sidered according to the FEBEX and Yucca Mountain experiments. The regulatory
compliance periods in these types of repositories span over thousands to ten-thousands
of years.

Task D investigates thermo-hydro-mechanical as well as thermo-hydro-chemical pro-
cesses. Thus, two sub-tasks of different objectives have been defined. The task defi-
nition that focuses on geomechanical processes is referred to as D THM, and the other
one focusing on geochemical processes is referred to as D THC. The simulation presented
in this work concentrates on the thermo-hydro-mechanical sub-task D THM. For more
details concerning the other sub-task, the interested reader should refer to Barr et al.
(2004) [2].

9.3.1.2 General model set-up

Description of repository scenarios. As mentioned above, two different generic
repository settings are considered named Yucca Mountain type and FEBEX type.
Consequently, both sub-tasks are further sub-divided into (1) THC1/THM1 and (2)
THC2/THM2. The repository type (1) is supposed to be located in saturated crys-
talline rock, where emplacement tunnels are backfilled with buffer material of FEBEX
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type, while the emplacement of type (2) is defined to be proceeded in open gas-filled
tunnels of Yucca Mountain type. The similarities and differences of both scenarios are
summarized in Table 9.6.

Table 9.6: Task D. Summary of similarities and differences between repository scenar-
ios [2].

Repository Scenario (1): Repository Scenario (2):

FEBEX Type Yucca Mountain Type

Compl. Period To be defined 10,000 years

Geometry Similar Similar

Initial Heat 290 W/m 1,450 W/m

Load Ventilation effects reduce this

load during 50-year period.

Tunnel Bentonite-filled Open, no buffer.

Flow in Tunnel Initially unsaturated; swelling Gas flow

effects. Two-phase flow

under thermal gradient.

Rock Sparsely fractured Densely fractured volcanic rock.

crystalline rock.

Flow in Rock Saturated in far-field rock. Unsaturated.

Initially unsaturated in Two-phase flow under thermal

near-field rock. gradient.

Geometric data. The model set-up is similar for both Yucca Mountain and FEBEX
type. A schematic general description of the model geometry, the boundary conditions,
the specific areas of focus, and profiles/locations for which simulation outputs should be
derived is presented in Fig. 9.19. Due to symmetry conditions only a single drift has
to be considered, representing a repository of infinite length and width. Consequently,
this approach represents an extreme setting as interactions with the surrounding area
are restricted to top and bottom boundaries. The specific data of sub-task THM1, to be
analyzed in this work, is given in detail in the next section.

9.3.1.3 Specific model set-up of sub-task THM1

Model dimensions. According to the general definitions given in Fig. 9.19, the model
dimensions for Task THM1 are summarized in Table 9.7.

Material properties. The material properties of the rock is summarized in Table 9.8.
The bentonite buffer material is of FEBEX type. The material properties of the bentonite
are summarized in Table 9.9. The water retention curve is a modified and a standard
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Figure 9.19: General model description for Task D, THM. Model geometry and boundary
conditions (above). Locations of points, lines and areas for model output (below) [2].

van Genuchten function for the bentonite and the rock, respectively. The curves are
depicted in Fig. 9.20.
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Table 9.7: Task D THM1. Model dimensions.

Dimension Value

Vertical length, Lz 1,000 m

Horizontal length, Lx 35 m

Drift diameter, d 2.28 m

Diameter of waste canister 0.9 m

Table 9.8: Task D THM1. Material properties of the rock.

Parameter Value

Density, ρ 2, 700 kg m−3

Porosity, n 0.01

Biot’s constant, α 1.0

Young’s modulus, E 35 GPa

Poisson’s ratio, ν 0.3

Specific heat c 900.0 J kg−1 K−1

Thermal conductivity, λ 3.0 W m−1K−1

Thermal expansion coeff., αT 1.0 × 10−5 K−1

Permeability, k 1.0 × 10−17 m2

Rel. Permeability, krel krel =
√

S (1 − (1 − (S1/0.6)0.6)2

Water retention, S(pc) S = (1 + ( pc

1.47 MPa
)2.5)−0.6

Table 9.9: Task D THM1. Material properties of the bentonite buffer.

Parameter Value

Dry density, ρ 1, 600 kg m−3

Porosity, n 0.41

Biot’s constant, α 1.0

Young’s modulus, E 100 MPa

Poisson’s ratio, ν 0.35

Moisture swelling coefficient, βsw 0.238

Dry specific heat, cs 767 J kg−1 K−1, ((1.38 K−1 · T + 732.5) J kg−1 K−1)

Thermal conductivity, λm 1.3 Wm−1K−1, ((1.28 − 0.71
1+e(S−0.65)/0.1 ) Wm−1K−1)

Thermal expansion coeff. αT 1.0 × 10−5 K−1

Permeability, k 1.0 × 10−21 m2

Rel. permeability, krel krel = S3

Water retention, S(pc) S = 0.01 + 0.99 (1 + ( pc

35 MPa
)1.43)−0.3 (1 − pc

4000 MPa
)1.5
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Figure 9.20: Water retention and relative permeability curves for granite rock (standard
van Genuchten) and FEBEX bentonite material (modified van Genuchten) as defined in
Table 9.8 and Table 9.9.

Heat output. The thermal power emitted by a reference Pressurized Water Reactor
(PWR) element is depicted in Fig. 9.21. Assuming that the waste is 30 years old at
emplacement time, the current heat output is 400 W per PWR element. Considering an
alignment of four PWR elements per canister of 4.54 m length and a canister spacing
of 2 m results in an average thermal power per meter drift of 4 × 400 W/6.54 m =
245 W/m. The temporal evolution of this value is according to the decay curve depicted
in Fig. 9.21 in consideration of the initial disposal time of 30 years.

In situ stress field. The in situ stress field is assumed to depend linearly on the depth
D. The horizontal total stress is prescribed by the function σh = 0.055 MPa/m · D +
4.6 MPa while the vertical stress is evaluated by the stress of the overlying rock mass.
Thus, at the drift axis the initial value of the horizontal stress is 32.1 MPa while the
vertical stress is about 13.5 MPa.

Modeling sequence. The modeling sequence demanded in Task THM1 is concerned
with (a) the pre-excavation conditions, (b) the simulation of the excavation, (c) the
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Figure 9.21: Thermal power decay function of a reference fuel PWR element [2].

installation of bentonite buffer and finally (d) the transient simulation of the post-closure
thermo-hydro-mechanical behavior of the repository. The sequences and the associated
initial and boundary conditions are depicted in Fig. 9.22. The numerical predictions for
these sequences are presented in the next sections.

9.3.1.4 Numerical simulation of pre-excavation conditions

The pre-excavation is simulated in order to check the correctness of the initial values of
the numerical model. As the stress and fluid pressure fields are correct and the strain
is equal to zero, the simulation of the next phases can be initiated. The results are
presented in the following three sections.

9.3.1.5 Numerical simulation of the excavation

With the pre-excavation model at hand, the excavation is simulated by disregarding
the rock mass elements. The deformation and the stress increase due to excavation is
depicted in Fig. 9.23. It also shows the decrease of fluid pressure around the tunnel
causing an overall settlement of the drift and the overlying rock mass.

9.3.1.6 Numerical simulation of installation of bentonite buffer

The installation of the bentonite buffer is finally simulated by replacing the rock mass
elements by bentonite elements. No initial stresses are applied. The initial saturation is
65 %. This phase immediately runs over into the transient phase which is presented in
the next section.
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Figure 9.22: Specific modeling sequence, initial and boundary conditions for Task D,
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Figure 9.23: Horizontal stress (left) in the deformed near field due to excavation. The
undeformed mesh represents the initial configuration. The settlement of the drift is due to
the transient pressure field (right) influenced by the drainage caused by the atmospheric
pressure in the drift wall. The displacements are scaled by factor 250.

9.3.1.7 Numerical simulation of the transient thermo-hydro-mechanical re-
sponse

The transient simulation predicts the thermo-hydro-mechanical response of the reposi-
tory for a time range of 100,000 years. The RockFlow results, presented in the following,
are compared to predictions carried out with two different codes, namely TOUGH2 and
ROCMAS. The reference values obtained with TOUGH2 and ROCMAS are taken from
Birkhölzer et al. (2005) [10]. The presentation of the resulting values is according to the
model output specifications given in Fig. 9.19.

Temperature evolution. The evolution of the temperature is depicted in Fig. 9.24
and Fig. 9.25. The peak temperature of 93.2 ◦C is reached after 11 years. As the
temperature strongly depends on the heat output, the maximum temperature is very
sensitive to the interpolation of the thermal power decay function depicted in Fig. 9.21.
Its logarithmic decrease has to be reflected in the time step size in order to ensure a
correct integration in time. Regarding the temperature field, the length of the time
period for the reestablishment of initial state conditions is more than 100,000 years.

Evolution of water saturation and fluid pressure. The fluid pressure profiles of
the RockFlow, TOUGH2 and ROCMAS simulations are shown in Fig. 9.26 and Fig. 9.27.
During the steady-state analysis of the excavation sequence, the overburden is drained
due to prescribed atmospheric pressure in the drift. After emplacement of the PWR
canisters and backfilling the tunnel with a partially saturated bentonite mixture, the
closing of the drift is initiated. In the model, the closing is described by releasing the
fluid pressure boundary condition at the wall of the drift. Thus, the hydrostatic gradient
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Figure 9.25: Comparison of TOUGH-
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[10].

of fluid pressure is slowly reestablished within the whole domain of bentonite and rock
mass. The resaturation of the bentonite takes about 30 years, but it has to be mentioned
that no evaporation and moisture transport has been taken into account. Regarding the
fluid pressure field, the length of the time period for the reestablishment of the initial
state is more than 100 years.

Fluid Pressure, p (MPa)

z
(m

)

0 2 4 6 8 10
-500

-400

-300

-200

-100

0

100

200

300

400

500

EXC

1 Y

100,000 Y

100 Y
1,000 Y to

10 Y

Figure 9.26: RockFlow simulation results of
vertical pressure profiles.

FLUID PRESSURE, P (MPa)

)
m(

Z

0 2 4 6 8 10
-500

-400

-300

-200

-100

0

100

200

300

400

500

t = 0

t = 1y

t = 10y

t = 100 to
1000,0000 Y

ROCMAS

TOUGH2

Figure 9.27: Comparison of TOUGH2 and
ROCMAS simulation results of vertical
pressure profiles [10].



9.3 Coupled analysis of partially saturated thermoelastic and elasto-plastic media 131

Evolution of stress. The vertical profiles of the horizontal and vertical component of
the total stress are presented in Fig. 9.28 and Fig. 9.29. The total stress is defined to be
compound by the effective stress σ and the fluid pressure p reduced by the saturation S
in case of unsaturated conditions

σtot = σ − p S 1 (9.1)

Remark: In contrast to the convention of negative compressive stress used within this
work, in the ROCMAS code the convention is vice versa as a positive compressive stress
is usually preferred in soil mechanics. Due to this fact the values of the stress profiles
depicted in the following figures are of opposite sign.

(MPa)

z
(m

)

-100-80-60-40-200
-500

-400

-300

-200

-100

0

100

200

300

400

500

EXC

10 Y
100 Y Max 92.9 MPa

Initial Stress
Before Excavation

1 Y

σ
x
tot (MPa)

)
m(

Z

0 25 50 75 100
-500

-400

-300

-200

-100

0

100

200

300

400

500

Initial Stress
Before Excavation

t = 0 After
Excavation
and Drainage

t = 1 y
t = 10 y

t = 100 y

Max 93 MPa

x

tot
-σ

(MPa)

z
(m

)

-100-80-60-40-200
-500

-400

-300

-200

-100

0

100

200

300

400

500

100,000 Y 1,000 Y

100 Y Max 92.9 MPa

10,000 Y

σ
x
tot (MPa)

)
m(

Z

0 25 50 75 100
-500

-400

-300

-200

-100

0

100

200

300

400

500

10,000 Y

1,000 Y

100 Y

Max 93 MPa

100,000 Y

x

tot
-σ

Figure 9.28: Simulation results of vertical profiles of total horizontal stress. RockFlow
(left) and ROCMAS (right) [10].
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In the total stress plots not only the variation of thermal stresses becomes obvious but
changes in fluid pressure can also be identified as well. After excavation, the total stress
is lower than the initial stress, which is induced by the decrease of water pressure due
to the drainage process. At the end of the simulation time of 100,000 years, when the
initial water pressure field is build up again, the stresses increase linearly with depth.
Neglecting the disturbance by the drift, the stresses at level z = 0 m would result in the
initial stress values of -32.1 MPa in horizontal direction and about -13.5 MPa in vertical
direction.
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ROCMAS (right) [10].
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Evolution of displacement. The profiles of the vertical displacement are presented
in Fig. 9.30 and Fig. 9.31. The initial settlement of the entire column is caused by the
drainage of water into the open drift during the excavation phase. During the excavation
phase, the water pressure above the drift is assumed to be equal to atmospheric pres-
sure. After closing the drift, the reestablishment of water pressure and the temperature
increase due the prescribed heat power output cause an upwardly directed displacement
of the drift and the whole column.
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Figure 9.30: RockFlow simulation results of
vertical displacement profiles.
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Figure 9.31: ROCMAS simulation results
of vertical displacement profiles [10].

9.3.1.8 Conclusions

The numerical predictions achieved in the RockFlow simulations are in good agreement
to the results predicted by the other research teams involved in Task D.

The partially saturated bentonite buffer and the time period of resaturation is of special
interest. It becomes obvious that the resaturation is limited by the low conductivity of
the barrier material. The influence of swelling pressure on the porosity and permeability
could be of interest.

As the temperature is significantly below the boiling point of water, the effect of evap-
oration and the moisture transport forced by the thermal gradient is neglected here,
but might be of considerable importance, especially if high temperatures occur at the
canister.



134 9.3 Coupled analysis of partially saturated thermoelastic and elasto-plastic media

9.3.2 Embankment problem

9.3.2.1 Introduction

This example is concerned with the two-dimensional simulation of a multiphase flow
through an embankment. Numerical results of this problem are given for example by
Ehlers et al. [35]. The embankment is depicted in Fig. 9.32. It has a height of 10 m and a
slope of 1:3 at both sides. The ground level is assumed to have a low permeability of the
same magnitude as the central sealing unit. Geometries of steeper slope are investigated
in order to identify situations of possible failure.

9.3.2.2 Model set-up

The set-up of the embankment problem and its boundary conditions are depicted in
Fig. 9.32. The material properties of the different parts of the dam are summarized in
Table 9.10.
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Figure 9.32: Embankment problem. Model set-up and boundary conditions.

The capillary pressure relation is defined by a van Genuchten function. For more details
refer to van Genuchten (1980) [106]. The relation is defined as follows

Sl
eff(pc) = [1 + (αgen pc)

jgen ]−hgen (9.2)

where Sl
eff is the effective liquid (water) saturation defined as follows

Sl
eff :=

Sl − Sl
res

1 − Sl
res − Sg

res
(9.3)
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Table 9.10: Embankment problem. Material properties.

Parameter Dam (1) Central seal (2) Dam (3) Foundation (4)

Young’s modulus E (MPa) 14.516 14.516 14.516 100.0

Poisson’s ratio ν (-) 0.3 0.3 0.3 0.3

Permeability k (m2) 1.0 × 10−12 1.0 × 10−15 1.0 × 10−9 1.0 × 10−15

Solid grain density ρs (kg m−3) 2700 2700 2700 2700

Porosity n (-) 0.46 0.46 0.46 0.46

and Sl
res and Sg

res are residual saturation of the liquid and gaseous phase, respectively.

The relative permeability saturation relation is

kl
rel = (Sl

eff)εgen [1 − [1 − (Sl
eff)1/hgen ]hgen ]2. (9.4)

The chosen parameters are αgen = 2 × 10−5, jgen = 2.3, hgen = 1.5 and εgen = 0.5.

The hydraulic-mechanical simulation of unsaturated flow in the embankment predicts the
transient change in the location of saturated and unsaturated zones caused by varying
water depths in a range of 2 m to 8 m. Moreover, the coupled simulation allows the
estimation of zones of possible failure if the stress field is evaluated by an appropriate
yield criterion.

9.3.2.3 Numerical simulation of multiphase flow

A transient simulation with a periodic variation of the water depth has been carried out.
The resulting saturation fields in the embankment at water levels h of 2 m and 8 m are
depicted in Fig. 9.33. The evaluation of a Drucker-Prager type yield function indicates
that no plastic deformation occurs if this kind of standard embankment configuration is
applied.

9.3.2.4 Numerical prediction of zones of possible failure

Hydraulic-mechanical simulations of the embankment configuration presented above have
proven that no mechanical failure occurs. The major reasons are the central seal, the
mild slope of 1:3 and a moderate change in water level.

Investigations has also been carried out for an embankment consisting of a slope of
1 :

√
2. In case of a quick drop-out of the water level, the water remains in the dam and

a relatively high water pressure arises on the seaward side. The pressure field, depicted in
Fig. 9.34, causes possible failure at the seaward dam base as can be seen in the evaluation
of a Drucker-Prager type yield criterion parameterized by a friction angle of φ = 10◦

and a cohesion of C = 40 kPa.
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Figure 9.33: Embankment problem. Saturation fields and velocity vectors indicating the
direction of fluid flow at a water level of h = 8 m (above) and h = 2 m (below) predicted
in a transient simulation.
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Figure 9.34: Embankment problem. Evaluation of the Drucker-Prager yield function
(above) and excess pore pressure (below). Saturated and partially saturated zones are
separated by a white line in the pressure field.
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9.3.3 Slope stability problem

9.3.3.1 Introduction

The slope stability analysis is a crucial aspect in geotechnical applications. In saturated
or partially saturated soils the pore water pressure reduces the mean effective stress in
the porous skeleton and may cause failure. The impact of a rising water table on the
stability of a slope is addressed in the present section. First, a reference simulation is
carried out in a purely mechanical approach, which is comparable to drained conditions.
Afterwards the results are compared to a hydraulic-mechanical simulation considering
the excess pore pressure of the water table.

9.3.3.2 Geometry and model set-up

The purpose of this application is to investigate the stability of a slope with an inclination
of 1:1. Similar simulations are given by Panesso (1998) [79], Regueiro and Borja (1999)
[83] or Ehlers et al. (2004) [35], amongst others. Gravitational acceleration and an
extra load due to a rigid footing at the top of the slope are considered. The footing is
represented by an almost rigid body loaded by an increasing distributed load. The load
is controlled by an increasing load factor λ within an interval of [0...λcrit]. The resulting
set-up of the model is depicted in Fig. 9.35. The soil is supposed to be a water saturated
porous medium. Its constitutive behavior is approximated by the plasticity model of
Drucker-Prager. The material parameters are summarized in Table 9.11.

20.0 m

1
0
.0

 m

l . 00 kN/m1

u ux z= = 0

ux = 0

p = 0 Pa

x

z

g

4.0 m 6.0 m

Figure 9.35: Slope stability problem. Geometry and boundary conditions.
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Table 9.11: Slope stability problem. Material properties.

Parameter Symbol Value

Young’s modulus E 10.0 MPa

Poisson’s ratio ν 0.3

Cohesion C 65.0 kPa

Internal friction angle φ 10.0 ◦

Dilatancy angle ψ 0.0 ◦

Permeability k 1.0 × 10−10 m2

Water viscosity µw 10−3 Pa s

Water density ρw 1000 kg m−3

Solid grain density ρs 2700 kg m−3

Porosity n 0.2

Gravity g 9.81 m s−2

Biot coefficient α 1.0

9.3.3.3 Numerical results

In order to investigate the impact of a rising water pressure two different simulations
are carried out. The first one is a purely mechanical approach without hydraulic effects
while the second one is a fully coupled simulation including the hydrostatic fluid pressure
field. The deformation of the solid skeleton induces a flow of the pore water, but the
corresponding pressure build-up is insignificant due to relatively high permeable soil.

For both cases the simulation is performed with an increasing load. The simulation is
carried on until the critical load is reached. The differing critical load factors determined
for both systems indicate the influence of the hydrostatic pore water pressure.

Failure analysis in a purely mechanical approach. The resulting shear band in
a purely mechanical simulation, representing soil in drained conditions without pore
pressure arising, is depicted in Fig. 9.36. The critical state is reached with a load factor
of λcrit = 0.44.

Failure analysis of fully saturated soil. The resulting shear band in fully satu-
rated conditions is depicted in Fig. 9.37. With λcrit = 0.31 the resulting critical load is
significantly lower than in the previous simulation. Simultaneously, the lower stability
results in a bigger shear band zone. This reflects the crucial impact of pore water excess
pressure in geotechnical analysis.
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Figure 9.36: Slope stability problem in case of drained conditions. Shear bands in the
deformed slope at λcrit = 0.44.
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Figure 9.37: Slope stability problem in case of fully saturated conditions. Shear bands
in the deformed slope at λcrit = 0.31 with arrows indicating the flow direction of the pore
water.
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Chapter 10

Conclusions and recommendations

10.1 Conclusions

In the framework of the finite element method, this work investigates coupling phe-
nomena occurring in geotechnical problems. The formulations are based on the well
established Theory of Porous Media presented in Chapter 2. The mixture theory, the
kinematical description and the conservation equations of the coupled thermo-hydro-
mechanical processes are addressed here. The resulting set of governing equations de-
scribing the behavior of saturated and partially saturated flow in a deformable porous
medium is given in Chapter 3. The problem is solved numerically by applying the finite
element method outlined in Chapter 4 which also gives an overview of the numerical and
iterative methods needed for solving non-linear equations arising in coupled problems.

Several coupling phenomena may occur in thermo-hydro-mechanical modeling. Those of
most importance are mentioned in Chapter 5 also presenting some numerical aspects of
the required solution procedure for algebraic equations of coupled problems. Couplings
become even more important if they affect the constitutive behavior of the medium or
the fluid. Chapter 6 gives a short overview of the phenomenological constitutive behavior
of soils and describes the required algorithmic treatment.

The applied computational methods and used software concepts for developing a finite
element code for research as well as for practical purposes are described in Chapter 7.
The used strategy of implementing separate formulations for each process added by the
needed coupling formulations leads to a flexible structure. Thus, piecewise activation
of particular processes and couplings is combined with a useful and extendible control
and steering facility. The developed graphical user interface provides a broad insight
into the simulation cycle and the calculated results. With the implementation of new
algorithms, methods and data structures a modern and self-documenting finite element
code for coupled thermo-hydro-mechanical analysis has been established.

In Chapter 8 the developed finite element algorithms for coupled thermo-hydro-
mechanical processes and their implementation are verified by benchmarks based on
analytical solutions or other well-founded numerical research results.
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With the verified implementations at hand, numerical simulations of coupled problems
are carried out. The applications portrayed in Chapter 9 give an overview of coupled
thermo-hydro-mechanical modeling in the field of partially saturated media and demon-
strate the applicability of the developed strategy of a process oriented implementation.

Applications in geotechnical engineering like Performance Assessment of Engineered Bar-
rier Systems or the slope stability analysis of unsaturated soils show the usability of the
implemented formulations. They also identify possible subjects of future developments
in the context of a more accurate and stable multiphase flow formulation and the im-
portance of the consideration of vapor transport modeling.

10.2 Recommendations

The strategy of separate implementation of coupled processes and couplings presented in
this work and the developed computational framework of a graphically assisted and doc-
umented finite element code give the opportunity to realize even more complex coupled
modeling software. Some interesting aspects shall be mentioned.

Non-isothermal multiphase flow formulations are available and the numerical simulation
of highly non-linear phase change effects are possible. Future research has to verify
that these formulations can successfully be incorporated into a thermo-hydro-mechanical
framework.

The significance of geometric non-linearities should be considered for reliable predictions
in non-linear analyses of geotechnical materials. Due to the coupling phenomena, these
non-linear effects also influence flow specific material properties of the solid and thus
strongly affect the flow field and consequently other coupled processes.

Further activities should focus on the consideration of reactive transport processes in
order to provide possible changes of material properties by leaching, precipitation induced
by radionuclide release or by displacement of solute.
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Notation

Typefaces

Typeface Meaning

v,M vector or matrix notation
T tensor notation
s scalar value
•i index
•id identifier

Accents

Accent Meaning

•̂ nodal value
•̄ boundary value
(e)• finite element contribution

Operators

Partial derivatives. Let f : R
ndim → R and x1, . . . , xndim

are Euclidean coordinates,
corresponding to the orthonormal basis e1, . . . ,endim

. We use the following notations

∂if =
∂

∂xi

f where i = 1, . . . , ndim.

∂tf =
∂

∂t
f,

where t is the time. The notation f,i = ∂if will not be used.

The gradient operator. Let f : R
ndim → R. If x1, . . . , xndim

are Euclidean coordi-
nates, corresponding to the orthonormal basis e1, . . . ,endim

, then the gradient operator ∇
can be considered as a vector-valued differential operator. In ndim-dimensional Euclidean
space it is written as

∇ =

ndim∑

i

∂

xi

ei.

The symmetric gradient operator. The symmetric gradient operator ∇sym applied
on a vector field v ∈ R

ndim is considered as a tensor-valued differential operator. With
the standard basis {ei} in R

ndim it is written as follows

∇sym v :=
1

2
[∇v + (∇v)T] =

1

2
(∂ivj + ∂jvi) ei ⊗ ej where i, j = 1, . . . , ndim.
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Directional derivatives. Let f : R
ndim → R be continuously differentiable. Then, the

gradient ∇f is also defined by the property

Dv = ∇f · v ∀ v ∈ R
ndim

where Dv is the directional derivative with respect to v.

The divergence operator. The divergence operator is expressed by

∇ · v =
∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z

where v is a vector or a tensor field.

Vector norms

The 1-norm. The 1-norm of the vector v = (v1..., vn)T ∈ R
n is defined by

‖v‖1 =
n∑

i=1

|vi|.

The 2-norm. The 2-norm, of the vector v = (v1..., vn)T ∈ R
n is defined by

‖v‖2 = (vTv)1/2 =

{
n∑

i=1

|vi|2
}1/2

.

The 2-norm is called Euclidean norm and will also be denoted by ‖v‖.

The ∞-norm. The ∞-norm of the vector v = (v1..., vn)T ∈ R
n is defined by

‖v‖∞ =
n

max
i=1

|vi|.
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Nomenclature

Temporal quantities

Symbol SI-Unit Meaning

t s time
∆t s time step length
λ − load factor

Spatial quantities

Symbol SI-Unit Meaning

X m material coordinates
x m spatial coordinates
a m2 surface element
v m3 volume element

Material quantities

Symbol SI-Unit Meaning

c J kg−1 K−1 specific heat capacity
C N m−2 cohesion
C N m−2 elasticity tensor
D m2 s−1 diffusion coefficient
D W m−1 K−1 diffusion tensor
E N m−2 Young’s modulus
f N m−2 yield function
g N m−2 plastic potential function
G N m−2 shear modulus
h hardening type
k m2 permeability tensor
krel − relative permeability
K Pa bulk modulus
n − porosity
n m normal unit vector
q set of internal variables
r − direction of plastic flow
S Pa−1 storativity
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(continued)
Symbol SI-Unit Meaning

α − Biot’s coefficient
αT K−1 linear thermal expansion coefficient
β m dispersion length
βT K−1 linear volumetric thermal expansion coefficient
βsw linear volumetric swelling coefficient
β N m−2 back stress
γ − consistency parameter
λ W m−1 K−1 thermal conductivity
λ N m−2 Lamé’s constant
µ Pa s dynamic viscosity
ν − Poisson’s ratio
ρ kg m−3 density
σ N m−2 effective stress tensor
σtot N m−2 total stress tensor
σY N m−2 yield stress
ϕα phase of constituent α
ϕ mixture
φ ◦ angle of internal friction
ψ ◦ angle of dilatancy

State quantities

Symbol SI-Unit Meaning

u m solid displacement
p Pa fluid pressure
S − saturation
T K, ◦C temperature
C − concentration

Derived quantities

Kinematical quantities

Symbol SI-Unit Meaning

F − deformation gradient
H − displacement gradient
ε − linearized strain tensor
e − deviatoric part of linearized strain tensor
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Stresses quantities

Symbol SI-Unit Meaning

σ N m−2 stress tensor
s N m−2 deviatoric part of the stress tensor
p N m−2 hydrostatic part of the stress
σ1, σ2, σ3 N m−2 principle values of the stress tensor
s1, s2, s3 N m−2 principle values of the deviatoric stress tensor
I1, I2, I3 N m−2, N2 m−4, first, second and third invariant of the stress tensor

N3 m−6

J1, J2, J3 N m−2, N2 m−4, first, second and third invariant of the deviatoric part
N3 m−6 of stress the tensor

θ ◦ Lode angle

Flux quantities

Symbol SI-Unit Meaning

J kg m−2 s−1 volume averaged advective and diffusive mass flux
densities

J t J m−2 s−1 volume averaged conductive thermal energy flux density

Velocity and acceleration

Symbol SI-Unit Meaning

v m s−1 velocity
q m s−1 volume averaged velocity of the liquid relative to the

solid of saturated porous media (q = n vl s)
a m s−2 acceleration
g m s−2 acceleration due to gravity
g m s−2 acceleration vector to gravity

Source quantities

Symbol Meaning

Q production term (internal)
q source term (external)
t load term (external)

Indices

Symbol Meaning

α phase index
i iteration index
n time step index
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Identifiers

Symbol Meaning

algo algorithmic (consistent)
b body
c capillary
crit crit
eff effective
el element
g gaseous
iso isotropic
kin kinematic
l liquid
m mixture
n node
pl plastic
rel relative
s solid
(•)α s quantity (•)α with respect to the solid displacement
t thermal
tot total
trial trial
w water

Finite element quantities

Symbol Meaning

nel number of elements
nn number of nodes per element
ngp number of evaluation points for Gaussian quadrature

(Gauss points)
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thesis, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen, Uni-
versität Hannover, 1997.

[2] D. Barr, J. Birkhölzer, J. Rutqvist, and E. Sonnenthal. Draft Description for
DECOVALEX-THMC. Task D: Long-Term Permeability/Porosity Changes in EDZ and
Near Field, due to THM and THC Processes in Volcanic and Crystalline-Bentonite Sys-
tems. REV02 December 2004, Office of Repository Development, U.S. Dept. of Energy;
Earth Sciences Division, LBNL, USA, Berkeley, 2004.

[3] K.-J. Bathe. Finite Element Procedures. Prentice Hall, Englewood Cliffs, 1996.

[4] J. Bear and Y. Bachmat. Introduction to Modeling of Transport Phenomena in Porous
Media. Kluwer Academic Publishers, Dordrecht, 1990.

[5] N. Bicanic and K. H. Johnson. Who was ’-Raphson’. International Journal for Numerical
Methods in Engineering, 14(1):148–152, 1979.

[6] M. A. Biot. General theory of three dimensional consolidation. Journal of Applied
Physics, 12:155–164, 1941.

[7] M. A. Biot. Theory of propagation of elastic waves in a fluid-saturated porous solid,
I. Low frequency range. The Journal of the Acoustical Society of America, 28:168–178,
1956.

[8] M. A. Biot. Theory of propagation of elastic waves in a fluid saturated porous solid, II.
Higher frequency range. The Journal of the Acoustical Society of America, 28:179–191,
1956.

[9] M. A. Biot and D. G. Willis. The elastic coefficients of a theory of consolidation. Journal
of Applied Mechanics, 79:594–601, 1957.

[10] J. Birkholzer, J. Rutqvist, E. Sonnenthal, and D. Barr. DECOVALEX-THMC. Task D:
Long-Term Permeability/Porosity Changes in EDZ and Near Field due to THM and THC
Processes in Volcanic and Crystalline-Bentonite Systems. Status Report October 2005,
Earth Sciences Division, LBNL, USA; Office of Repository Development, DOE, USA,
Berkeley, 2005.

[11] R. I. Borja and A. Aydin. Computational modeling of deformation bands in granular me-
dia, I: Geological and mathematical framework. Computer Methods in Applied Mechanics
and Engineering, 193(27-29):2667–2698, 2004.

149



150 Bibliography

[12] R. I. Borja and S. R. Lee. Cam-clay plasticity, Part I: Implicit integration of elasto-
plastic constitutive relations. Computer Methods in Applied Mechanics and Engineering,
78(1):49–72, 1990.

[13] R. M. Bowen. Thermodynamics of diffusion. In A. C. Eringen, editor, Continuum physics,
volume 3: Mixtures and EM field theories, pages 1–127. Academic Press, New York, 1976.

[14] R. M. Bowen. Incompressible porous-media models by use of the theory of mixtures.
International Journal of Engineering Science, 18(9):1129–1148, 1980.

[15] R. M. Bowen. Compressible porous-media models by use of the theory of mixtures.
International Journal of Engineering Science, 20(6):697–735, 1982.

[16] D. Braess. Finite Elements. Theory, Fast Solvers and Applications in Solid Mechanics.
Cambridge University Press, Cambridge, 2nd edition, 2002. reprint.

[17] C. Braun. Ein Upscaling-Verfahren für Mehrphasenströmungen in porösen Medien. PhD
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Appendix A

Numerical methods and derivations

A.1 Convergence of iterative solution procedures

Linear convergence. Suppose that the sequence {xi} is convergent with limi→∞ xi =
x∗. Convergence is linear if there exists a constant 0 < r < 1 such that

‖xi+1 − x∗‖
‖xi − x∗‖ ≤ r. (A.1)

The number r is called the rate of convergence.

Superlinear convergence. The convergence of a sequence is superlinear if

‖xi+1 − x∗‖
‖xi − x∗‖ → 0. (A.2)

Quadratic convergence. We have a quadratic order of convergence if

‖xi+1 − x∗‖
‖xi − x∗‖2

≤ C (A.3)

with a constant C.

Note: Quadratic convergence implies superlinear convergence, to see this, multiply
both sides of the equation by ‖xi − x∗‖.

A.2 Derivation of finite elements

Gauss’s theorem (divergence theorem). Let Ω ⊆ R
3 be a region which is the

interior of a closed surface Γ. The unit normal vector, denoted by n, is pointing outward.
Let J be a continuous differentiable vector field defined on an open set containing interior
Ω and the surface Γ.
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Then, we can formulate the following divergence theorem

∫

Ω

∇ · J dΩ =

∫

Γ

Jn dΓ (A.4)

which means that the volume integral of the divergence of J over the interior coincides
with the flux integral of J over the bounding surface Γ.

Weak formulation. In this section, the procedure of deriving the weak form of a
partial differential equation is briefly described. The problem under consideration is the
Poisson problem. This boundary value problem (BVP) is defined as follows: For a given
f ∈ L

2(Ω), uD ∈ H
1(Ω), and gD ∈ L

2(Γ) we are searching the solution u ∈ H
1(Ω) which

satisfies the Poisson equation

−∇ · (∇u) = f (A.5)

with Dirichlet boundary conditions u = uD on ΓD and Neumann boundary conditions
∇un = g on ΓN .
The weak formulation of this BVP is obtained by multiplying the equation (A.5) with
ω ∈ H

1
D(Ω) := {ω ∈ H

1(Ω)|ω = 0 on ΓD} and integration over Ω

−
∫

Ω

∇ · ∇u · ω dΩ =

∫

Ω

f · ω dΩ. (A.6)

Application of Green’s theorem on the divergence operator in Eq. (A.6), that means
integration by parts and application of Gauss’s theorem, results in the following

∫

Ω

∇ · (∇u) · ω dΩ =

∫

Ω

∇u · ∇ω dΩ −
∫

ΓN

∇un dΓ. (A.7)

With Eq. (A.7) we finally get the weak formulation of the Poisson problem

∫

Ω

∇u · ∇ω dΩ =

∫

Ω

f · ω dΩ +

∫

ΓN

g · ω dΓ. (A.8)

where the Neumann boundary conditions g on ΓN are included simultaneously. Dirichlet
boundary conditions uD can be considered by assuming a homogeneous solution v ∈
H

1
D(Ω), given by v = u − uD which satisfies v = 0 on ΓD.

The solution u = v + uD of the Poisson equation is obtained by finding v ∈ H
1
D(Ω) such

that

∫

Ω

∇v · ∇ω dΩ =

∫

Ω

f · ω dΩ +

∫

ΓN

g · ω dΓ +

∫

Ω

∇uD · ∇ω dΩ. (A.9)
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Transformation from global to local coordinates and the Jacobian. Transfor-
mation from global x = (x, y, z)T to local ξ = (ξ, η, ζ)T coordinates allows to evaluate
the matrices in unit coordinates. Usually, isoparametric elements are used. These ele-
ments use the same shape functions (interpolations) to define the geometry as were used
to define the the primary unknowns, for example the displacements. So the geometry is
approximated by

x(ξ) ≈ x̂(ξ) =
nn∑

i=1

Ni(ξ)xi . (A.10)

The Jacobian matrix relating the natural coordinate derivatives to the local coordinate
derivatives, see for example [98, 3, 115], is defined in the following way





∂/∂ξ
∂/∂η
∂/∂ζ



 = J





∂/∂x
∂/∂y
∂/∂z



 where J =





∂x/∂ξ ∂y/∂ξ ∂z/∂ξ
∂x/∂η ∂y/∂η ∂z/∂η
∂x/∂ζ ∂y/∂ζ ∂z/∂ζ



 . (A.11)

So the global derivatives of the shape functions can be calculated by using the local
derivatives and the inverse Jacobian matrix





∂N(ξ)/∂x
∂N(ξ)/∂y
∂N(ξ)/∂z



 = J−1





∂N(ξ)/∂ξ
∂N(ξ)/∂η
∂N(ξ)/∂ζ



 (A.12)

with

J(ξ) =
n∑

i=1





∂Ni(ξ)/∂ξ
∂Ni(ξ)/∂η
∂Ni(ξ)/∂ζ









xi

yi

zi





T

. (A.13)

Numerical integration. For evaluating the element integrals Gauss quadrature can
be used. With the isoparametric concept this yields to

∫

Ωe

[•] dΩe =

∫ 1

−1

∫ 1

−1

∫ 1

−1

[•] detJ dr ds dt =

ngp∑

k=1

[•]k wgk Jk (A.14)

where ngp are the sampling points with the weights wgk. Jk is the determinant of the
Jacobian matrix J, defined in Eq. (A.11, evaluated at sampling point k.
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Appendix B

Application of the finite element
method on a hydraulic-mechanically
coupled saturated flow problem

In the present section, the finite element formulation for the hydraulic-mechanically
coupled problem of fully saturated flow in poro-elastic porous media, as presented in
Sec. 3.2, is derived.

B.1 Finite element formulation

Weak formulation. The weak form of the hydraulic-mechanical part of the problem
summarized in Sec. 3.2 is achieved by applying the standard Galerkin method as pre-
sented in Sec. A.2. This weak integral formulation is derived within finite elements
resulting in a set of matrices given in App. B.2. Thus, the coupled problem can be
written in the following form

K
dû

dt
+ Q

dp̂

dt
=

d(f ext
u − f int

u )

dt
(B.1)

QTdû

dt
+ Cp̂ + S

dp̂

dt
= f ext

p , (B.2)

Temporal discretization. The equations have to be discretized in time. Introducing
a time step ∆tn = tn+1 − tn, the time derivatives in the differential equation can be
replaced by finite differences. For the temporal integration between time tn and tn+1

different methods can be used. In order to achieve a stable scheme without dependence
of the time step length, the implicit Euler backward method usually is used.

K∆û + Q∆p̂ = f ext
u (n+1) − f int

u (n) (B.3)

QT ∆û

∆t
+ Cp̂(n+1) + S

∆p̂

∆t
= f ext

p (n+1)
(B.4)

After applying the temporal discretization, the equations has be rearranged in order to
get the solution at time tn+1. An incremental approach with the formulation of resulting
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increments ∆(•̂) = (•̂)n+1 − (•̂)n, a direct formulation of the solution vector (•̂)n+1 or a
mixture of both is possible, as applied in the following set of equations

K∆û + Qp̂(n+1) = f ext
u (n+1) − f int

u (n) − Qp̂(n) (B.5)

QT

∆t
∆û + Cp̂(n+1) +

S

∆t
p̂(n+1) = f ext

p (n+1)
− S

∆t
p̂(n) (B.6)

Linear system of equations. The final system of linear equations can directly be
formulated. In case of linear material behavior the equation can be solved within a
single step.

[
Kuu Cup

Cpu Kpp

]{
∆û

p̂

}

=

{
Ru

Rp

}

(B.7)

where

Kuu = K (B.8)

Kpp = C +
S

∆t
(B.9)

Cup = Q (B.10)

Cpu =
QT

∆t
(B.11)

Ru = f ext
u (n+1) − f int

u (n) − Qp̂(n) (B.12)

Rp = f ext
p (n+1)

− S

∆t
p̂(n) (B.13)

The global coefficient matrices appearing in these algebraic equations are composed by

the finite element matrices
(e)

[•] given in App. B.2 for each sub-problem. The finite element
assembly sums up the contributions of nel elements according to the mesh connectivity
and can be written as follows

[•] =
nel

A
e=1

(e)

[•] (B.14)

where [•] and
(e)

[•] are the is the global matrix and the finite element matrices, respectively.

The operator
nel

A
e=1

is called the standard finite element assembly operator.
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B.2 Finite element matrices

In this section, the finite element matrices of both the fluid and the solid sub-problem
are summarized in Table B.1 and Table B.2, respectively.

Table B.1: Fluid sub-problem.

Matrix / Vector Meaning

(e)

C =

∫

Ωe

(∇Np)
T
k

µ
∇Np dΩe Conductance matrix

(e)

S =

∫

Ωe

NpSNp dΩe Storativity matrix

(
(e)

Q)T =

∫

Ωe

Np αmB dΩe Coupling matrix (volume)

(e)

f ext
p =

∫

Ωe

(∇Np)
T
k

µ
∇Npρ

fgz dΩe +

∫

Γe∩ΓN
p

Npq̄ dΓe External source vector

Table B.2: Solid sub-problem.

Matrix / Vector Meaning

(e)

K =

∫

Ωe

BTCB dΩe Stiffness matrix

(e)

Q =

∫

Ωe

BT αmTNp dΩe Coupling matrix (pressure)

(e)

f ext
u =

∫

Ωe

Nuρg dΩe +

∫

Γe∩ΓN
u

Nut̄ dΓe External load vector

(e)

f int
u =

∫

Ωe

BT(σ − α pmT) dΩe Internal force vector

The external source and load vectors q̄ and t̄ are the components of the stress tensor and
fluid flux vectors normal to the boundary defined by the outward normal n as follows

q̄ = q n, t̄ = σ n (B.15)

and m is the vector representation of the first order unit tensor

m = [1, 1, 1, 0, 0, 0] . (B.16)
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Different ansatz spaces are used for the two sub-problems. In the hydraulic problem
the pressure is approximated linearly, while quadratic shape functions are used for the
approximation of the displacement field.

Nu =





Nu

Nv

Nw



 , B =











∂xNu,x 0 0
0 Nv,y 0
0 0 Nw,z

Nu,y Nv,x 0
0 Nv,z Nw,y

Nu,z 0 Nw,x











(B.17)

Nu = Nv = Nw =







(e)

Nu
1

(e)

Nu
2
...

(e)

Nu
nu

nod







, Np =







(e)

Np
1

(e)

Np
2
...

(e)

Np
np

nod







(B.18)



Appendix C

Various derivations

C.1 Invariants of second order tensors

Stress tensor invariants

I1 = tr(σ) = σii = σxx + σyy + σzz

= σ1 + σ2 + σ3

I2 =
1

2
σijσij = σxxσyy + σyyσzz + σxxσzz − σ2

xy − σ2
xz − σ2

yz

= σ1σ2 + σ2σ3 + σ3σ1

I3 =
1

3
σijσjkσki = det(σij) =

∣
∣
∣
∣
∣
∣

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

∣
∣
∣
∣
∣
∣

= σ1σ2σ3

Deviatoric stress tensor invariants

J1 = tr(s) = sii

= s1 + s2 + s3

= 0

J2 =
1

2
s : s =

1

2
sijsij

=
1

2
(s2

1 + s2
2 + s2

3)

J3 = det(sij) =
1

3
sijsjkskl

= s1s2s3
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J2 =
1

3
(I2

1 − 3I2)

J3 =
1

27
(2I3

1 − 9I1I2 + 27I3)

Further useful invariants

The mean stress σ also called hydrostatic stress p and the octahedral shear stress τ are
defined as follows

σ =
1

3
(σ1 + σ2 + σ3) =

1

3
I1 (C.1)

τ =

√

2

3

√

J2. (C.2)

The equivalent stress q and the equivalent plastic strain epl
q are work-conjugate quantities.

They are defined as follows

q =

√

3

2
||s|| =

√
3
√

J2 (C.3)

epl
q =

√

2

3
||e||. (C.4)

Partial derivatives of stress tensor invariants

Some important derivatives of stress invariants are summarized below. With the as-
sumption that s = sT the norm of the second order tensor s is ||s|| =

√
s : s =

√
ssT =

√

tr(sTs) and
∂||s||
∂s

=
s

||s|| . (C.5)

For the evaluation of the plastic flow the derivatives of the invariants I1, J2, J3 with
respect to the stress tensor are required. They are as follows

∂I1

∂σ
= 1, (C.6)

∂J2

∂s
= s, (C.7)

∂J3

∂s
= s2 − 2

3
J2 1. (C.8)
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C.2 Thermoelasticty

Three-dimensional problem

The stress strain relations for three-dimensional problems are:

εx − αT (T − T0) =
1

E
(σx − ν(σy + σz))

εy − αT (T − T0) =
1

E
(σy − ν(σx + σz))

εz − αT (T − T0) =
1

E
(σz − ν(σx + σy))

(C.9)

γxy =
τxy

G
γyz =

τyz

G
γxz =

τxz

G
(C.10)

Two-dimensional problem

Three-dimensional thermoelastic problems can be formulated in only two dimensions if
there is no temperature variation in the third direction. In case of thin plates or in case
of equal cross sections a plane stress or plane strain state may be assumed, respectively.

Plane stress In a state of plane stress, with σz = τxz = τyz = 0, the stress-strain
relations are as follows

εx − αT (T − T0) =
1

E
(σx − νσy)

εy − αT (T − T0) =
1

E
(σy − νσx)

(C.11)

γxy =
τxy

G
. (C.12)

Plane strain In a state of plane strain, with εz = γxz = γyz = 0, the stress-strain
reations are as follows

εx − (1 + ν)αT (T − T0) =
1 − ν2

E
(σx −

ν

1 − ν
σy)

εy − (1 + ν)αT (T − T0) =
1 − ν2

E
(σy −

ν

1 − ν
σx)

(C.13)

γxy =
τxy

G
. (C.14)

These equations can be obtained from the equations of plane stress, Eqs. (C.11), by
replacing E with E/(1 − ν2), ν with ν/(1 − ν) and αT with (1 + ν)αT . The analytical
solution may be transformed in the same way (c.f. [102]).
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C.3 Parameterization of transverse isotropy

Transverse isotropy in terms of engineering elastic properties

Table C.1: Invariant formulation of transverse isotropy. The axis of transverse isotropy
is defined by a and supposed to be x (1-direction).

a e1

e3

e2

direction perpendicular to plane of isotropy: 1
plane of isotropy: 23
(a = e1)

Invariants and their representation in five independent elastic parameters
1 λ = E2(ν23 + ν13ν31)/D
2 α = E2(ν13(ν32 − ν31) − ν32)/D

3
β = (E1(1 − ν32ν23) − E2[(ν23 + ν13ν31)

+2(ν13(ν32 − ν31) − ν32)])/D − 4G12 + 2G23

4 GL = G12

5 GT = G23

where
D = 1 − ν2

32 − 2ν13ν31 − 2ν13ν32ν31

and
E2 = E3

ν12 = ν13

ν21 = ν31

ν23 = ν32

ν21 =
E1

E2

ν12

G23 =
E2

2(1 + ν32)
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Transverse isotropy in terms of engineering elastic properties

Table C.2: Transverse isotropy in terms of engineering elastic properties E, G, and ν.
The axis of transverse isotropy is x (1-direction).

e1

e3

e2

direction perpendicular to plane of isotropy: 1
plane of isotropy: 23

Parameter Relations Definition
1 E1 Young’s modulus in direction (1)

perpendicular to isotropic plane
2 E2 E2 = E3 Young’s modulus in plane of isotropy (23)
3 ν12 ν12 = ν13 Poisson’s ratio for the normal strain in the

ν21 = ν31 (1)-direction in the plane of isotropy (23)
ν12 = ν21 E2/E1 related to the normal strain in the (2)-direction

in the perpendicular plane due to uniaxial
stress in the (2) direction

4 ν23 ν23 = ν32 Poisson’s ratio for the normal strain in the
(1)-direction in the plane of isotropy (23)
related to the normal strain in the (3)-direction
due to uniaxial stress in (3) direction

5 G12 G12 = G13 Cross shear modulus between plane of isotropy
(23) and perpendicular plane (12) or (13)

6 G23 G23 =
E2

2(1 + ν32)
Shear modulus in plane of isotropy (23)

(G23 is a dependent parameter to be derived
from the above mentioned.)
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Table C.3: Transverse isotropy in terms of engineering elastic properties E, G, and ν.
The axis of transverse isotropy is y (2-direction).

e1

e3

e2

direction perpendicular to plane of isotropy: 2
plane of isotropy: 13

Parameter Relations Definition
1 E2 Young’s modulus in direction (2)

perpendicular to isotropic plane
2 E1 E1 = E3 Young’s modulus in plane of isotropy (13)
3 ν21 ν21 = ν23 Poisson’s ratio for the normal strain in the

ν12 = ν32 (2)-direction in the plane of isotropy (13)
ν21 = ν12 E1/E2 related to the normal strain in the (1)-direction

in the perpendicular plane due to uniaxial
stress in the (1) direction

4 ν13 ν13 = ν31 Poisson’s ratio for the normal strain in the
(2)-direction in the plane of isotropy (13)
related to the normal strain in the (3)-direction
due to uniaxial stress in (3) direction

5 G21 G21 = G23 Cross shear modulus between plane of isotropy
(13) and perpendicular plane (21) or (23)

6 G13 G13 =
E1

2(1 + ν31)
Shear modulus in plane of isotropy (13)

(G13 is a dependent parameter to be derived
from the above mentioned.)
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Table C.4: Transverse isotropy in terms of engineering elastic properties E, G, and ν.
The axis of transverse isotropy is z (3-direction).

e1

e3

e2

direction perpendicular to plane of isotropy: 3
plane of isotropy: 12

Parameter Relations Definition
1 E3 Young’s modulus in direction (3)

perpendicular to isotropic plane
2 E1 E1 = E2 Young’s modulus in plane of isotropy (12)
3 ν31 ν31 = ν32 Poisson’s ratio for the normal strain in the

ν13 = ν23 (3)-direction in the plane of isotropy (12)
ν31 = ν13 E1/E3 related to the normal strain in the (1)-direction

in the perpendicular plane due to uniaxial
stress in the (1) direction

4 ν12 ν12 = ν21 Poisson’s ratio for the normal strain in the
(3)-direction in the plane of isotropy (12)
related to the normal strain in the (2)-direction
due to uniaxial stress in (2) direction

5 G31 G31 = G32 Cross shear modulus between plane of isotropy
(12) and perpendicular plane (31) or (32)

6 G12 G12 =
E1

2(1 + ν21)
Shear modulus in plane of isotropy (12)

(G12 is a dependent parameter to be derived
from the above mentioned.)
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